We propose a new digital method for sizing particles and tracking their positions from an in-line hologram by using a combination of a wavelet transform and a reconstruction of the envelope functions. In the proposed method, the hologram is recorded by a charge-coupled device (CCD) sensor. The wavelet transform of digitized holograms gives information about the position of particles, while the reconstruction of envelope functions provides the size of particles. Preliminary theoretical and experimental verifications are presented. The system limitation of the method is discussed. 相似文献
To directly compare the reactivity of positively charged carbon-centered aromatic σ-radicals toward methanol in solution and in the gas phase, the 2-, 3-, and 4-dehydropyridinium cations (distonic isomers of the pyridine radical cation) were generated by ultraviolet photolysis of the corresponding iodo precursors in a mixture of water and methanol at varying pH. The reaction mixtures were analyzed by using liquid chromatography/mass spectrometry. Hydrogen atom abstraction was the only reaction observed for the 3- and 4-dehydropyridinium cations (and pyridines) in solution. This also was the major reaction observed earlier in the gas phase. Depending on the pH, the hydrogen atom can be abstracted from different molecules (i.e., methanol or water) and from different sites (in methanol) by the 3- and 4-dehydropyridinium cations/pyridines in solution. In the pH range 1-4, the methyl group of methanol is the main hydrogen atom donor site for both 3- and 4-dehydropyridinium cations (just like in the gas phase). At higher pH, the hydroxyl groups of water and methanol also act as hydrogen atom donors. This finding is rationalized by a greater abundance of the unprotonated radicals that preferentially abstract hydrogen atoms from the polar hydroxyl groups. The percentage yield of hydrogen atom abstraction by these radicals was found to increase with lowering the pH in the pH range 1.0-3.2. This pH effect is rationalized by polar effects: the lower the pH, the greater the fraction of protonated (more polar) radicals in the solution. This finding is consistent with previous results obtained in the gas phase and suggests that gas-phase studies can be used to predict solution reactivity, but only as long as the same reactive species is studied in both experiments. This was found not to be the case for the 2-iodopyridinium cation. Photolysis of this precursor in solution resulted in the formation of two major addition products, 2-hydroxy- and 2-methoxypyridinium cations, in addition to the hydrogen atom abstraction product. These addition products were not observed in the earlier gas-phase studies on 2-dehydropyridinium cation. Their observation in solution is explained by the formation of another reactive intermediate, the 2-pyridylcation, upon photolysis of 2-iodopyridinium cation (and 2-iodopyridine). The same intermediate was observed in the gas phase but it was removed before examining the reactions of the desired radical, 2-dehydropyridinium cation (which cannot be done in solution). 相似文献
The pseudohelical hydrocarbons (R)-6, (S)-7, and (R)-8 and the helical hydrocarbon (P)-9, formally derived from the helical hydrocarbon (P)-4 by stepwise replacement of each of the four-membered rings by a five-membered ring, have been prepared. Their optical rotations vary systematically, both in magnitude and sign. Of the extremes, (P)-4 represents the usual case of a right-handed dextrorotatory helix, while (P)-9 represents the unusual case of a right-handed levorotatory helix. To rationalize these facts, DFT calculations of the rotatory power of (P)-helices of three-, four-, and five-membered rings have been performed. The results show a very good agreement with the experimental data for the rigid helices of three-membered rings and always show the correct sign and order of magnitude for the flexible helices of four- and five-membered rings for which Boltzmann-averaged optical rotations of up to six conformers had to be used. Within the conformers of the latter, a set of large dihedral angles for the bonds of the inner sphere correspond to a high specific rotation, and a set of small dihedral angles correspond to a low specific rotation. As a consequence, the Boltzmann-averaged values markedly depend on the geometry and weight of the conformers involved. 相似文献
Zirconium oxide (ZrO2) is one of the leading candidates to replace silicon oxide (SiO2) as the gate dielectric for future generation metal-oxide-semiconductor (MOS) based nanoelectronic devices. Experimental studies have shown that a 1–3 monolayer SiO2 film between the high permittivity metal oxide and the substrate silicon is needed to minimize electrical degradation. This study uses density functional theory (DFT) to investigate the initial growth reactions of ZrO2 on hydroxylated SiO2 by atomic layer deposition (ALD). The reactants investigated in this study are zirconium tetrachloride (ZrCl4) and water (H2O). Exchange reaction mechanisms for the two reaction half-cycles were investigated. For the first half-reaction, reaction of gaseous ZrCl4 with the hydroxylated SiO2 surface was studied. Upon adsorption, ZrCl4 forms a stable intermediate complex with the surface SiO2–OH* site, followed by formation of SiO2–O–Zr–Cl* surface sites and HCl. For the second half-reaction, reaction of H2O on SiO2–O–Zr–Cl* surface sites was investigated. The reaction pathway is analogous to that of the first half-reaction; water first forms a stable intermediate complex followed by evolution of HCl through combination of a Cl atom from the surface site and an H atom from H2O. The results reveal that the stable intermediate complexes formed in both half-reactions can lead to a slow film growth rate unless process parameters are adjusted to lower the stability of the complex. The energetics of the two half-reactions are similar to those of ZrO2 ALD on ZrO2 and as well as the energetics of ZrO2 ALD on hydroxylated silicon. The energetics of the growth reactions with two surface hydroxyl sites are also described. 相似文献
Well dispersed ruthenium(0) nanoparticles, stabilized in the ionic liquid agent, trihexyltetradecylphosphonium dodecylbenzenesulfonate, have been successfully prepared via a reduction reaction of the precursor [CpRuCp*RuCp*]PF6 (Cp* = C5Me5). The ruthenium(0) nanoparticles were shown to catalyze the isotope exchange reaction between 10B enriched diborane and natural abundant B10H14 to produce highly 10B enriched (approximately 90%) decaborane(14) products. The ruthenium(0) nanoparticles were characterized by TEM, XRD, and XPS. The 10B enriched decaborane(14) has been analyzed by Raman spectroscopy, NMR, and high-resolution MS. 相似文献
The adsorption of NO and CO was studied on an alumina-supported platinum catalyst by in situ diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS). The temperature range was 50-160 degrees C and a wide variety of partial pressures was used. The band-target entropy minimization (BTEM) algorithm was applied to the DRIFTS data sets resulting in the pure component spectra of numerous species adsorbed on both the Pt (primarily a variety of Pt0-CO and Pt2+ -CO species) and alumina surface (i.e. nitrates, nitrites, bicarbonates, isocyanates) as well as gas-phase species. Thirty-one previously known species were identified as well as 6 new and previously unreported or previously unassigned spectra. The present results indicate that BTEM analysis of DRIFTS data is a very promising tool for the study of heterogeneous catalytic in situ spectroscopic data. 相似文献
The gas-phase reactivity of two aromatic carbon-centered σ,σ-biradicals (meta-benzyne analogs) and a related monoradical towards small oligonucleotides of differing lengths was investigated in a Fourier-transform ion cyclotron resonance (FT-ICR) mass spectrometer coupled with laser-induced acoustic desorption (LIAD). The mono- and biradicals were positively charged to allow for manipulation in the mass spectrometer. The oligonucleotides were evaporated into the gas phase as intact neutral molecules by using LIAD. One of the biradicals was found to be unreactive. The reactive biradical reacts with dinucleoside phosphates and trinucleoside diphosphates mainly by addition to a nucleobase moiety followed by cleavage of the glycosidic bond, leading to a nucleobase radical (e.g., base-H) abstraction. In some instances, after the initial cleavage, the unquenched radical site of the biradical abstracts a hydrogen atom from the neutral fragment, which results in a net nucleobase abstraction. In sharp contrast, the related monoradical mainly undergoes facile hydrogen atom abstraction from the sugar moiety. As the size of the oligonucleotides increases, the rate of hydrogen atom abstraction from the sugar moiety by the monoradical was found to increase due to the presence of more hydrogen atom donor sites, and it is the only reaction observed for tetranucleoside triphosphates. Hence, the monoradical only attacks sugar moieties in these substrates. The biradical also shows significant attack at the sugar moiety for tetranucleoside triphosphates. This drastic change in reactivity indicates that the size of the oligonucleotides plays a key role in the outcome of these reactions. This finding is attributed to more compact conformations in the gas phase for the tetranucleoside triphosphates than for the smaller oligonucleotides, which result from stronger stabilizing interactions between the nucleobases.
A combination of singular value decomposition, entropy minimization, and simulated annealing was applied to a synthetic 7-species spectroscopic data set with added white noise. The pure spectra were highly overlapping. Global minima for selected objective functions were obtained for the transformation of the first seven right singular vectors. Simple Shannon type entropy functions were used in the objective functions and realistic physical constraints were imposed in the penalties. It was found that good first approximations for the pure component spectra could be obtained without the use of any a priori information. The present method out performed the two widely used routines, namely Simplisma and OPA-ALS, as well as IPCA. These results indicate that a combination of SVD, entropy minimization, and simulated annealing is a potentially powerful tool for spectral reconstructions from large real experimental systems. 相似文献
A method established in the present study has proven to be effective in the synthesis of Mn(2)O(3) nanocrystals by the thermolysis of manganese(III) acetyl acetonate ([CH(3)COCH=C(O)CH(3)](3)-Mn) and Mn(3)O(4) nanocrystals by the thermolysis of manganese(II) acetyl acetonate ([CH(3)COCH=C(O)-CH(3)](2)Mn) on a mesoporous silica, SBA-15. In particular, Mn(2)O(3) nanocrystals are the first to be reported to be synthesized on SBA-15. The structure, texture, and electronic properties of nanocomposites were studied using various characterization techniques such as N2 physisorption, X-ray diffraction (XRD), laser Raman spectroscopy (LRS), temperature-programmed reduction (TPR), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS). The results of powder XRD at low angles show that the framework of SBA-15 remains unaffected after generation of the manganese oxide (MnO(x)) nanoparticles, whereas the pore volume and the surface area of SBA-15 dramatically decreased as indicated by N2 adsorption-desorption. TEM images reveal that the pores of SBA-15 are progressively blocked with MnO(x) nanoparticles. The formation of the hausmannite Mn(3)O(4) and bixbyite Mn(2)O(3) structures was clearly confirmed by XRD. The surface structures of MnO(x) were also determined by LRS, XPS, and TPR. The crystalline phases of MnO(x) were identified by LRS with corresponding out-of-plane bending and symmetric stretching vibrations of bridging oxygen species (M-O-M) of both MnO(x) nanoparticles and bulk MnO(x). We also observed the terminal Mn=O bonds corresponding to vibrations at 940 and 974 cm-1 for Mn(3)O(4)/SBA-15 and Mn(2)O(3)/SBA-15, respectively. These results show that the MnO(x) species to be highly dispersed inside the channels of SBA-15. The nanostructure of the particles was further identified by the TPR profiles. Furthermore, the chemical states of the surface manganese (Mn) determined by XPS agreed well with the findings of LRS and XRD. These results suggest that the method developed in the present study resulted in the production of MnO(x) nanoparticles on mesoporous silica SBA-15 by controlling the crystalline phases precisely. The thus-prepared nanocomposites of MnO(x) showed significant catalytic activity toward CO oxidation below 523 K. In particular, the MnO(x) prepared from manganese acetyl acetonate showed a higher catalytic reactivity than that prepared from Mn(NO(3))2. 相似文献