首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2529篇
  免费   83篇
  国内免费   14篇
化学   1774篇
晶体学   10篇
力学   79篇
数学   402篇
物理学   361篇
  2021年   26篇
  2020年   54篇
  2019年   37篇
  2018年   32篇
  2017年   23篇
  2016年   74篇
  2015年   60篇
  2014年   66篇
  2013年   103篇
  2012年   97篇
  2011年   100篇
  2010年   92篇
  2009年   76篇
  2008年   101篇
  2007年   105篇
  2006年   121篇
  2005年   106篇
  2004年   93篇
  2003年   80篇
  2002年   96篇
  2001年   50篇
  2000年   52篇
  1999年   53篇
  1998年   46篇
  1997年   56篇
  1996年   56篇
  1995年   54篇
  1994年   50篇
  1993年   39篇
  1992年   39篇
  1991年   37篇
  1990年   26篇
  1989年   44篇
  1988年   22篇
  1987年   15篇
  1986年   24篇
  1985年   31篇
  1984年   31篇
  1983年   34篇
  1982年   15篇
  1981年   26篇
  1980年   26篇
  1979年   37篇
  1978年   27篇
  1977年   25篇
  1976年   22篇
  1975年   18篇
  1974年   18篇
  1973年   19篇
  1971年   23篇
排序方式: 共有2626条查询结果,搜索用时 15 毫秒
941.
Spatial and temporal control over chemical and biological processes plays a key role in life and material sciences. Here we synthesized a two‐photon‐activatable glutathione (GSH) to trigger the interaction with glutathione S‐transferase (GST) by light at superior spatiotemporal resolution. The compound shows fast and well‐confined photoconversion into the bioactive GSH, which is free to interact with GST‐tagged proteins. The GSH/GST interaction can be phototriggered, changing its affinity over several orders of magnitude into the nanomolar range. Multiplexed three‐dimensional (3D) protein networks are simultaneously generated in situ through two‐photon fs‐pulsed laser‐scanning excitation. The two‐photon activation facilitates the three‐dimensional assembly of protein structures in real time at hitherto unseen resolution in time and space, thus opening up new applications far beyond the presented examples.  相似文献   
942.
Novel pyridine-based nitronyl nitroxide (NIT) biradicals, 3,5-bis[4-(1-oxyl-3-oxo-4,4,5,5-tetramethylimidazolin-2-yl)phenylethynyl)]pyridine (1) and 2,6-bis[4-(1-oxyl-3-oxo-4,4,5,5-tetramethylimidazolin-2-yl)phenylethynyl)]pyridine (2), and monoradicals, 4-(5-bromopyridine-3-ylethynyl)-1-(1-oxyl-3-oxo-4,4,5,5-tetramethylimidazolin-2-yl)benzene (3), 4-trimethylsilylethynyl-1-(1-oxyl-3-oxo-4,4,5,5-tetramethylimidazolin-2-yl)benzene (4), and 4-trimethylsilylethynyl-1-(1-oxyl-3-oxo-4,4,5,5-tetramethylimidazolin-2-yl)pyridine (5), were synthesized and investigated by ESR and UV-vis spectroscopy. The solution EPR measurements of the biradicals gave well-resolved, nine-line spectra with exact half line spacing as compared to monoradicals (giso = 2.0067) with isotropic line spacing /aN/= 7.36 G. This indicates strong, intramolecular exchange coupling (J > 7 x 10(-4) cm(-1); J/aN > 1) of the biradicals with in the limit of EPR. The temperature dependence on the Deltams = +/-2 signal intensity of biradicals follow Curie behavior down to 4 K ascertaining the triplet ground state or its near-degeneracy with the singlet state. UV-vis studies of 1-5 show characteristic differences in the extinctions of n-pi transitions around 600 nm. Both biradicals 1 and 2 were crystallized in monoclinic space groups C2/c and P2(1)/a with the intraradical distances 1.54 and 1.47 nm, respectively. Computational studies of the biradicals 1, 2, and 1,3-bis[4-(1-oxyl-3-oxo-4,4,5,5-tetramethylimidazolin-2-yl)phenylethynyl)]benzene (T) were performed by the AM1/CAS(8,8) method to calculate the singlet-triplet (DeltaEST) energy difference and the spin density distribution. Results show that the position of the pyridyl nitrogen in 1 and 2 in comparison with T does not alter the triplet ground-state spin multiplicities supporting the obtained experimental results.  相似文献   
943.
Crystals of four amine‐templated layered uranyl selenates, [C2H10N2][(UO2)(SeO4)2(H2O)](H2O) ( 1 ), [CH6N3]2[(UO2)(SeO4)2(H2O)](H2O)1.5 ( 2 ), [C4H12N]2[(UO2)(SeO4)2(H2O)] ( 3 ), and [CH6N3]3[(UO2)2(SeO4)2(H(SeO4)2)](H2O)2 ( 4 ) were prepared by evaporation from aqueous solution of uranyl nitrate, selenic acid and the respective amine. The structures of all four compounds have been solved by direct methods. The structures of 1 (monoclinic, C2/c, a = 11.787(2), b = 7.7007(10), c = 16.600(3) Å, β = 102.016(14)°, V = 1473.7(4) Å3, R1 = 0.037 for 1743 unique observed reflections), 2 (monoclinic, C2/c, a = 37.314(4), b = 7.1771(6), c = 13.2054(14) Å, β = 109.267(8)°, V = 3338.4(6) Å3, R1 = 0.088 for 3005 unique observed reflections) and 3 (monoclinic, C2/c, a = 27.212(10), b = 7.372(3), c = 23.113(7) Å, β = 117.75(2)°, V = 4103(3) Å3, R1 = 0.073 for 2111 unique observed reflections) are based on sheets of the composition [(UO2)(SeO4)2(H2O)]2? consisting of pentagonal [UO7]8? pentagonal bipyramids linked via [SeO4]2? tetrahedra. The sheets have the same chemical composition but different topologies. The structure of 4 (orthorhombic, P212121, a = 10.7261(9), b = 13.918(2), c = 18.321(2) Å, V = 2735.1(5) Å3, R1 = 0.050 for 5683 unique observed reflections) contains [(UO2)2(SeO4)2(H(SeO4)2)]3? sheets parallel to (001). In all four structures, the layers are connected via protonated amine and H2O molecules.  相似文献   
944.
2-Ammoniumethanethiolate, (-)SCH(2)CH(2)NH(3)(+), the first structurally characterized zwitterionic ammoniumthiolate, is the stable form of cysteamine (HL) in the solid state and in aqueous solution. Reactions of ZnCl(2), Cd(Oac)(2), and HgCl(2) with cysteamine and NaOH in a 1:2:2 ratio, respectively, lead to the homoleptic complexes ML(2). Their single-crystal X-ray structures demonstrate basic differences in the coordination chemistry of Zn(II), Cd(II), and Hg(II). While chelating N,S-coordination modes are found for all metal ions, Zn(II) forms a mononuclear complex with a distorted tetrahedral Zn(N(2)S(2)) coordination mode, whereas Hg(II) displays a dimer with Hg(N(2)S(2)) coordinated monomers being connected by two long Hg...S contacts. Solid-state (199)Hg NMR spectra of HgL(2) and [Hg(HL)(2)]Cl(2) reveal a low-field shift of the signals with increasing coordination number. Strong and nearly symmetric Cd-S-Cd bridges in solid CdL(2) lead to a chain structure, Cd(II) displaying a distorted square pyramidal Cd(N(2)S(3)) coordination mode. The ab initio [MP2/LANL2DZ(d,f)] structures of isolated ML(2) show a change from a distorted tetrahedral to bisphenoidal coordination mode in the sequence Zn(II)-Cd(II)-Hg(II). A natural bond orbital analysis showed a high ionic character for the M-S bonds and suggests that the S-M-S fragment is best described by a 3c4e bond. The strength of the M...N interactions and the stability of ML(2) toward decomposition to M and L-L decreases in the sequence Zn > Cd > Hg. Ab initio calculations further suggest that a tetrahedral S-M-S angle stabilizes Zn(II) against substitution by Cd(II) and Hg(II) in a M(N(2)S(2)) environment. Such geometry is provided in zinc-finger proteins, as was found by a database survey.  相似文献   
945.
The complex formation by Co2+, Ni2+, Cu2+, Zn2+, and Cd2+ with tris[2-(dimethylamino)ethyl]amine (N(CH2CH2NMe2)3, Me6tren) was investigated at 25° and at an ionic strength of 1, using VIS spectroscopy and potentiometric measurements. The stability constants of these complexes are compared with those of tris(2-aminoethyl)amine (N(CH2CH2NH2)3, tren), obtained under the same conditions. The values of the constants for Me6tren are much lower than those for tren, due to the bulky Me substituents. The values of the constants can be correlated with the ability of the individual metal ions to adopt coordination number 5. This appears to be easier for Cu2+ and Co2+ than for Cd2+ and Zn2+ and is very difficult for Ni2+. The 1:1 complexes [ML(H2O)]2+ are monoprotonic acids whose pKs values are similar or lower than those of the corresponding aquametal ions. The X-ray crystal structure of the copper(II) complex [Cu(SO4)(Me6tren)] · 8H2O reveals pentacoordination at the central ion. The UV/VIS spectra of the aqueous solutions of the Co2+, Ni2+, and Cu2+ 1:1 complexes confirm that the same coordination number is present also in these complexes.  相似文献   
946.
The arachidonic acid metabolites thromboxane A2 and prostacyclin are highly potent regulators of cell physiology. They are both formed by enzymatic rearrangement of the 9,11-epidioxy prostaglandin H2 catalyzed, however, by thromboxane and prostacyclin synthase, respectively. The two enzymes have been isolated, sequenced, and characterized as hemethiolate (“P450”) enzymes. The different isomerization products can be explained on the same catalytic principle by a different ligation of the heme centers with the two epidioxy oxygens atoms. This requires different conformations for substrate binding at the active site, which is substantiated by the different inhibitors and amino acid sequences of the enzymes. In a hypothesis which has mechanistic principles in common with the P450-monooxygenases and the allene oxide synthases, oxy radicals are formed first and rearrange to carbon radicals. These could then rapidly be converted into carbocations by the ferrylthiolate or iron(III )thiyl structures formed as intermediates.  相似文献   
947.
Abstract— Action spectra for growth reduction within the 260 nm to 305 nm waveband were measured for hypocotyls and roots of young etiolated cress ( Lepidium sativum ) seedlings. The action spectra show increasing photon effectiveness with decreasing wavelength and resemble those due to DNA damage. Using short term irradiations, photoreceptors absorbing in the visible range were found to be without influence. As no photoreactivation could be found and the seedlings showed no outward signs of damage, this growth effect may be due to a UV photoreceptor. A modeling calculation was carried out to estimate the effectiveness of solar UV-B on this response both under present conditions and under reduced ozone levels. Even under present conditions, solar UV-B could be involved in regulating growth during the period immediately after germination.  相似文献   
948.
The oligoalumosiloxanes {[Ph2SiO]8[Al(O)OH]4·2,5Et2O·HOtBu} ( 6 ) and {[Ph2SiO]8[Al(O)OH]4·2Et2O·2HOiPr} ( 7 ) have been obtained from the reaction of diphenylsilanediol with aluminium‐tritert‐butoxide and aluminium‐triiso‐propoxide in ethyl ether with reasonable yields. In a 1:1 molar mixture of toluene and the respective alcohol (iso‐propanol or tert‐butanol), the ethyl ether molecules in {[Ph2SiO]8[Al(O)OH]4·4Et2O}, in 6 or 7 can be completely displaced forming the compounds [Ph2SiO]8[Al(O)OH]4·4HOiPr ( 8 ) and [Ph2SiO]8[Al(O)OH]4·nHOtBu ( 9 ). Whereas 6 , 7 and 8 are crystalline, 9 is obtained as a viscous liquid. An X‐ray structure determination on {[Ph2SiO]8[Al(O)OH]4·3Et2O·HOtBu} reveals different bonding modes of the diethyl ether molecules to the oligoalumosiloxane compared to the tert‐butanol, which forms two hydrogen bonds (one to the OH‐group of the inner Al4(OH)4 cycle and one through the alcohol OH‐group to a Si–O–Al moiety. The alcohol adducts have been characterized in solution through 1H‐, 13C‐ and 29Si‐NMR and show dynamic equilibria between the oligoalumosiloxane [Ph2SiO]8[Al(O)OH]4 and the alcohol molecules.  相似文献   
949.
The vancomycin-type glycopeptide antibiotic balhimycin (I) and its dehaloanalogue dechlorobalhimycin (III), which is characterized by the total substitution of the two chlorine atoms of I by hydrogen, were employed as chiral selectors for the enantioresolution of 11 racemic dansyl amino acids and six 2-arylpropionic acid nonsteroidal anti-inflammatory racemic drugs by CE. The observed enantioresolution capability of I for all test analytes is clearly higher than that observed for III. This result suggests that chlorine substituents of I played a major role in the enantioresolution of these test analytes. A dimerization-based mechanism is proposed in order to explain this phenomenon. The two chlorine substituents of each monomer, which mutually penetrate into the cavity of the adjacent molecule of the dimer, are assumed to promote dimerization and as a consequence also enantioresolution.  相似文献   
950.
The synthesis of "designer" dendrimers and dendrons with sulfonimide units at every branching point is reported. The synthesis is based on a series of (regio)selective functionalization reactions of amines and sulfonamides allowing precise control of the dendrimers' shape, the number of branches in each generation, and their peripheral decoration with functional groups. In principle, structurally different branches can be incorporated at any position within the dendrimer structure at will. Structurally perfect symmetrical and two-faced "Janus"-type dendrimers, as well as dendrimers and dendrons with intended interstices were synthesized on a preparative scale and fully characterized. Oligosulfonimide dendrons of various generations bearing an aryl bromide functional group at their focal points were attached to a p-phenylene core with the aid of Suzuki cross-coupling reactions resulting in dendrimers with photoactive terphenyl cores. The structure and the high purity of all dendritic sulfonimides were confirmed by means of (1)H and (13)C NMR, electrospray ionization mass spectrometry (ESI-MS), and elemental analysis. The utility of MALDI-TOF mass spectrometry for the analytical characterization of these dendrimers was evaluated in comparison to electrospray ionization. Two model branched oligosulfonimides were characterized in the solid state by single-crystal X-ray analysis. Reaction selectivities and conformation of sulfonimide branching points were rationalized by DFT calculations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号