首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5046篇
  免费   180篇
  国内免费   43篇
化学   3228篇
晶体学   35篇
力学   122篇
数学   1004篇
物理学   880篇
  2023年   37篇
  2022年   68篇
  2021年   117篇
  2020年   101篇
  2019年   115篇
  2018年   99篇
  2017年   73篇
  2016年   160篇
  2015年   127篇
  2014年   144篇
  2013年   268篇
  2012年   296篇
  2011年   333篇
  2010年   215篇
  2009年   184篇
  2008年   310篇
  2007年   240篇
  2006年   254篇
  2005年   255篇
  2004年   222篇
  2003年   164篇
  2002年   174篇
  2001年   65篇
  2000年   58篇
  1999年   70篇
  1998年   52篇
  1997年   40篇
  1996年   80篇
  1995年   43篇
  1994年   39篇
  1993年   46篇
  1992年   41篇
  1991年   44篇
  1990年   22篇
  1989年   30篇
  1988年   26篇
  1987年   25篇
  1986年   27篇
  1985年   35篇
  1984年   39篇
  1983年   20篇
  1982年   39篇
  1981年   38篇
  1979年   26篇
  1978年   40篇
  1977年   32篇
  1976年   34篇
  1975年   21篇
  1974年   23篇
  1973年   23篇
排序方式: 共有5269条查询结果,搜索用时 15 毫秒
121.
Deep UV resonance Raman spectroscopy was used for characterizing ligand-metal ion complexes. The obtained results demonstrated a strong intrinsic sensitivity and selectivity of a Raman spectroscopic signature of a bicyclic diamide, a novel chelating agent for lanthanides and actinides (Lumetta, G. J.; Rapko, B. M.; Garza, P. A.; Hay, B. P.; Gilbertson, R. D.; Weakley, T. J. R.; Hutchison, J. E. J. Am. Chem. Soc. 2002, 124, 5644). Molecular modeling, which included structure optimization and calculation of Raman frequencies and resonance intensities, allowed for assigning all strong Raman bands of the bicyclic diamide as well as predicting the band shifts observed because of complex formation with metal ions. A comparative analysis of Raman spectra and the results of the molecular modeling could be used for elucidating the structure of complexes in solution.  相似文献   
122.
Surfactant solutions and porous substrates: spreading and imbibition   总被引:1,自引:0,他引:1  
In Section 1, spreading of small liquid drops over thin dry porous layers is investigated from both theoretical and experimental points of view [V.M. Starov, S.R. Kosvintsev, V.D. Sobolev, M.G. Velarde, S.A. Zhdanov, J. Colloid Interface Sci. 252 (2002) 397]. Drop motion over a porous layer is caused by an interplay of two processes: (a) the spreading of the drop over already saturated parts of the porous layer, which results in an expanding of the drop base, and (b) the imbibition of the liquid from the drop into the porous substrate, which results in a shrinkage of the drop base and an expanding of the wetted region inside the porous layer. As a result of these two competing processes, the radius of the drop goes through a maximum value over time. A system of two differential equations has been derived to describe the evolution with time of radii of both the drop base and the wetted region inside the porous layer. This system includes two parameters, one accounts for the effective lubrication coefficient of the liquid over the wetted porous substrate, and the other is a combination of permeability and effective capillary pressure inside the porous layer. Two additional experiments were used for an independent determination of these two parameters. The system of differential equations does not include any fitting parameter after these two parameters are determined. Experiments were carried out on the spreading of silicone oil drops over various dry microfiltration membranes (permeable in both normal and tangential directions). The time evolution of the radii of both the drop base and the wetted region inside the porous layer were monitored. All experimental data fell on two universal curves if appropriate scales are used with a plot of the dimensionless radii of the drop base and of the wetted region inside the porous layer on dimensionless time. The predicted theoretical relationships are two universal curves accounting quite satisfactory for the experimental data. According to theory predictions [1]: (i) the dynamic contact angle dependence on the same dimensionless time as before should be a universal function, and (ii) the dynamic contact angle should change rapidly over an initial short stage of spreading and should remain a constant value over the duration of the rest of the spreading process. The constancy of the contact angle on this stage has nothing to do with hysteresis of the contact angle: there is no hysteresis in the system under investigation. These conclusions again are in good agreement with experimental observations [V.M. Starov, S.R. Kosvintsev, V.D. Sobolev, M.G. Velarde, S.A. Zhdanov, J. Colloid Interface Sci. 252 (2002) 397]. In Section 2, experimental investigations are reviewed on the spreading of small drops of aqueous SDS solutions over dry thin porous substrates (nitrocellulose membranes) in the case of partial wetting [S. Zhdanov, V. Starov, V. Sobolev, M. Velarde, Spreading of aqueous SDS solutions over nitrocellulose membranes. J. Colloid Interface Sci. 264 (2003) 481-489]. The time evolution was monitored of the radii of both the drop base and the wetted area inside the porous substrate. The total duration of the spreading process was subdivided into three stages-the first stage: the drop base expands until the maximum value of the drop base is reached; the contact angle rapidly decreases during this stage; the second stage: the radius of the drop base remains constant and the contact angle decreases linearly with time; the third stage: the drop base shrinks and the contact angle remains constant. The wetted area inside the porous substrate expends during the whole spreading process. Appropriate scales were used with a plot of the dimensionless radii of the drop base, of the wetted area inside the porous substrate, and the dynamic contact angle on the dimensionless time. Experimental data showed [S. Zhdanov, V. Starov, V. Sobolev, M. Velarde, Spreading of aqueous SDS solutions over nitrocellulose membranes. J. Colloid Interface Sci. 264 (2003) 481-489]: the overall time of the spreading of drops of SDS solution over dry thin porous substrates decreases with the increase of surfactant concentration; the difference between advancing and hydrodynamic receding contact angles decreases with the surfactant concentration increase; the constancy of the contact angle during the third stage of spreading has nothing to do with the hysteresis of contact angle, but determined by the hydrodynamic reasons. It is shown using independent spreading experiments of the same drops on nonporous nitrocellulose substrate that the static receding contact angle is equal to zero, which supports the conclusion on the hydrodynamic nature of the hydrodynamic receding contact angle on porous substrates. In Section 3, a theory is developed to describe a spontaneous imbibition of surfactant solutions into hydrophobic capillaries, which takes into account the micelle disintegration and the concentration decreasing close to the moving meniscus as a result of adsorption, as well as the surface diffusion of surfactant molecules [N.V. Churaev, G.A. Martynov, V.M. Starov, Z.M. Zorin, Colloid Polym. Sci. 259 (1981) 747]. The theory predictions are in good agreement with the experimental investigations on the spontaneous imbibition of the nonionic aqueous surfactant solution, Syntamide-5, into hydrophobized quartz capillaries. A theory of the spontaneous capillary rise of surfactant solutions in hydrophobic capillaries is presented, which connects the experimental observations with the adsorption of surfactant molecules in front of the moving meniscus on the bare hydrophobic interface [V.J. Starov, Colloid Interface Sci. 270 (2003)]. In Section 4, capillary imbibition of aqueous surfactant solutions into dry porous substrates is investigated from both theoretical and experimental points of view in the case of partial wetting [V. Straov, S. Zhdanov, M. Velarde, J. Colloid Interface Sci. 273 (2004) 589]. Cylindrical capillaries are used as a model of porous media for theoretical treatment of the problem. It is shown that if an averaged pore size of the porous medium is below a critical value, then the permeability of the porous medium is not influenced by the presence of surfactants at any concentration: the imbibition front moves exactly in the same way as in the case of the imbibition of the pure water. The critical radius is determined by the adsorption of the surfactant molecules on the inner surface of the pores. If an averaged pore size is bigger than the critical value, then the permeability increases with surfactant concentration. These theoretical conclusions are in agreement with experimental observations. In Section 5, the spreading of surfactant solutions over hydrophobic surfaces is considered from both theoretical and experimental points of view [V.M. Starov, S.R. Kosvintsev, M.G. Velarde, J. Colloid Interface Sci. 227 (2000) 185]. Water droplets do not wet a virgin solid hydrophobic substrate. It is shown that the transfer of surfactant molecules from the water droplet onto the hydrophobic surface changes the wetting characteristics in front of the drop on the three-phase contact line. The surfactant molecules increase the solid-vapor interfacial tension and hydrophilise the initially hydrophobic solid substrate just in front of the spreading drop. This process causes water drops to spread over time. The time of evolution of the spreading of a water droplet is predicted and compared with experimental observations. The assumption that surfactant transfer from the drop surface onto the solid hydrophobic substrate controls the rate of spreading is confirmed by experimental observations. In Section 6, the process of the spontaneous spreading of a droplet of a polar liquid over solid substrate is analyzed in the case when amphiphilic molecules (or their amphiphilic fragments) of the substrate surface layer are capable of overturning, resulting in a partial hydrophilisation of the surface [V.M. Starov, V.M. Rudoy, V.I. Ivanov, Colloid J. (Russian Academy of Sciences English Transaction) 61 (3) (1999) 374]. Such a situation may take place, for example, during contact of an aqueous droplet with the surface of a polymer whose macromolecules have hydrophilic side groups capable of rotating around the backbone and during the wetting of polymers containing surface-active additives or Langmuir-Blodgett films composed of amphiphilic molecules. It was shown that droplet spreading is possible only if the lateral interaction between neighbouring amphiphilic molecules (or groups) takes place. This interaction results in the tangential transfer of "the overturning state" to some distance in front of the advancing three-phase contact line making it partially hydrophilic. The quantitative theory describing the kinetics of droplet spreading is developed with allowance for this mechanism of self-organization of the surface layer of a substrate in the contact with a droplet.  相似文献   
123.
[reaction: see text] A new Prins-type cyclization between homopropargylic alcohol and aldehydes in the presence of FeX(3) to obtain 2-alkyl-4-halo-5,6-dihydro-2H-pyrans in good yield is described. Osmium-catalyzed cis dihydroxylation provided direct access to trans-2-alkyl-3-hydroxy-tetrahydro-pyran-4-ones. Anhydrous ferric halides are also shown to be excellent catalysts for the standard Prins cyclization using homoallylic alcohol. Isolation of an intermediate acetal provides substantiation of a proposed mechanism.  相似文献   
124.
The stability and structure of non-covalent complexes of various peptides contatining basic amino acid residues (Arg, Lys) with metalloporphyrins were studied in a quadrupole ion trap mass spectrometer. The complexes of heme and three other metalloporphyrins with a variety of basic peptides and model systems were formed via electrospray ionization (ESI) and their stability was probed by energy-variable collision-induced dissociation (CID). A linear dependence for basic peptides and model compounds/metalloporphyrin complexes was observed in the plots of stability versus degrees of freedom and was used to evaluate relative bond strength. These results were then compared with previous data obtained for complexes of metalloporphyrins with His-containing peptides and peptides containing no basic amino acids. The binding strengths of Lys-containing peptide complexes in the gas phase was found to be almost as strong as that of Arg-containing complexes. Both systems showed stronger binding than His- containing peptides studied previously. To probe the structure of Arg and Lys non-covalent complexes (charge solvation versus salt bridges), two techniques, CID and ionmolecule reactions, were used. CID experiments indicate that the gas-phase complexes are most likely formed by charge solvation of the central metal ion in the metalloporphyrin by basic side chains of Arg or Lys. Results from the ionmolecule reaction studies are consistent with the charge solvation structure as well.  相似文献   
125.
An investigation of heparinase immobilization   总被引:1,自引:0,他引:1  
A systematic investigation of the parameters that affect the efficiency of immobilizing heparinase onto cyanogen bromide activated crosslinked 8% agarose beads was conducted. Two experimental measures, the “fraction bound” and the “fraction retained,” were used to monitor the coupling efficiency. The fraction bound is the portion of the total initial enzyme that is bound to the agarose gel. The fraction retained is the fraction of bound enzyme that is active. The product of the two measures indicates the coupling efficiency. The activity of the immobilized heparinase was measured under conditions free of both internal and external mass transfer limitations, and thus, the fraction retained represents the true immobilized enzyme activity. Increasing the degree of activation of the beads results in an increase in the fraction bound, the fraction retained, and consequently, the coupling efficiency. As the ratio of enzyme solution to gel volume increases from 1.5 to 2.2, the fraction bound remains constant but the fraction retained decreases (heparinase concentration; 0.15 mg/mL and degree of activation; 9.5 μmol of cyanate esters/g of gel). At volume ratios greater than 2.2, both the fraction bound and the fraction retained decline continuously. Changing the heparinase concentration in the coupling solution changes the coupling efficiency in a manner similar to that of the volume ratio change. When heparin is added during the coupling process, the fraction bound declines as the heparin concentration increases, whereas the fraction retained increases up to a heparin concentration of 12 mg/mL and decreases thereafter. When arginine, lysine, and glycine are used to block the unreacted cyanate ester groups after the coupling process, the immobilized heparinase shows different pH optima of 6.5, 6.9, and 7.2, respectively. Based upon these findings, a protocol to optimize heparinase immobilization is developed.  相似文献   
126.
β-Pinene was polymerized with H2O/BCl3 (protic) and p-dicumyl chloride and sym-tricumyl chloride (nonprotic) inifer systems in CH2Cl2 or CH2Cl2/n-C6H14 solvents from ?10 to ?70°C. The effect of solvent polarity, temperature, and monomer and inifer concentration on conversions and molecular weights was investigated. Low conversions and molecular weights, M?n = 1300–2500, obtained under these conditions suggest rapid termination.  相似文献   
127.
From the conversion–composition data of Gruber and Elias, the reactivity ratios of styrene (M1) and methyl methacrylate (M2) were calculated to be r1 = 0.55 ± 0.02 and r2 = 0.58 ± 0.06 at 90°C. The least-squares method was then used on these and literature values at other temperatures to obtain the Arrhenius expressions: In r1 = 0.04736 – (235.45/T), and ln r2 = 0.1183 – (285.36/T). Using literature values for the homopolymerization steps, A11 = 2.2 × 107l./mole-sec., E11 = 7.8 kcal./mole, and A22 = 0.51 × 107 l./mole-sec.?1, E22 = 6.3 kcal./mole, activation energies and frequency factors were then calculated for the cross-polymerization steps: A12 = 2.1 × 107 l./mole-sec., E12 = 7.3 kcal./mole, and A21 = 0.45 × 107 l./mole-sec., E21 = 5.7 kcal./mole.  相似文献   
128.
Cu (II) complexes with the sterically hindered diphenol derivatives 3,5-di(tert-butyl)-1,2-benzenediol (I), 4,6-di(tert-butyl)-1,2,3-benzenetriol (II) and the sulfur-containing 4,6-di(tert-butyl)-3-(2-hydroxyethylsulfanyl)-1,2-benzenediol (III) and 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfanyl]acetic acid (IV) have been synthesized and characterized by elemental analysis, TG/DTA, FT-IR, ESR, XPS, XPD and conductivity measurements. Compounds I–III can coordinate in their singly deprotonated forms and act as bidentate ligands. These compounds yield Cu (II) complexes of the stoichiometry Cu(L)2, which have square planar geometry (g| > g > ge). Unlike them, compound IV behaves as a terdentate ligand, and its complex Cu(LIV)2 has distorted octahedral geometry. According to ESR data, only the Cu(LII)2 complex contains a very small amount of phenoxyl radicals. Antimicrobial activities of these ligands and their respective Cu (II) complexes have been determined with respect to Gram-positive and Gram-negative bacteria, as well as on yeasts. Their phytotoxic properties against Chlorella vulgaris 157 were also examined.  相似文献   
129.
The title mol­ecule, C11H12O3, is almost planar, with an average deviation of the C and O atoms from the least‐squares plane of 0.146 (4) Å. The geometry about the C=C bond is trans. The phenyl ring and –COOCH3 group are twisted with respect to the double bond by 9.3 (3) and 5.6 (5)°, respectively. The endocyclic angle at the junction of the propenoate group and the phenyl ring is decreased from 120° by 2.6 (2)°, whereas two neighbouring angles around the ring are increased by 2.3 (2) and 0.9 (2)°. This is probably associated with the charge‐transfer interaction of the phenyl ring and –COOCH3 group through the C=C double bond. The mol­ecules are joined together through C—H?O hydrogen bonds between the methoxy and ester groups to form characteristic zigzag chains extended along the c axis.  相似文献   
130.
To probe the mechanism of gas-phase oligonucleotide ion fragmentation, modified oligonucleotides were studied using matrix-assisted laser desorption/ionization. The oligonucleotides were of the form 5'-TTTTXTTTTT, where X was a modified nucleotide. Modifications included substitution of hydroxy, methoxy, amino, and allyl groups at the 2'-position of the deoxyribose. The modified ribose contained adenine, guanine, cytosine, or uracil bases. For comparison, we studied oligomers where X was an unmodified adenosine, guanosine, cytidine, thymidine, or uridine deoxyribonucleotide. We found a very strong dependence of the matrix-to-analyte ratio on fragmentation for these oligomers. Analysis of these modifications suggests that the initial fragmentation step in MALDI-MS involves a two-step (E1) elimination of the base.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号