首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5085篇
  免费   180篇
  国内免费   43篇
化学   3265篇
晶体学   35篇
力学   122篇
数学   1004篇
物理学   882篇
  2023年   39篇
  2022年   103篇
  2021年   117篇
  2020年   101篇
  2019年   115篇
  2018年   99篇
  2017年   73篇
  2016年   160篇
  2015年   127篇
  2014年   144篇
  2013年   268篇
  2012年   296篇
  2011年   333篇
  2010年   215篇
  2009年   184篇
  2008年   310篇
  2007年   240篇
  2006年   254篇
  2005年   255篇
  2004年   222篇
  2003年   164篇
  2002年   174篇
  2001年   65篇
  2000年   58篇
  1999年   70篇
  1998年   52篇
  1997年   40篇
  1996年   80篇
  1995年   43篇
  1994年   39篇
  1993年   46篇
  1992年   41篇
  1991年   44篇
  1990年   22篇
  1989年   30篇
  1988年   26篇
  1987年   25篇
  1986年   27篇
  1985年   35篇
  1984年   39篇
  1983年   20篇
  1982年   39篇
  1981年   38篇
  1979年   26篇
  1978年   40篇
  1977年   32篇
  1976年   34篇
  1975年   21篇
  1974年   23篇
  1973年   23篇
排序方式: 共有5308条查询结果,搜索用时 15 毫秒
121.
An investigation of heparinase immobilization   总被引:1,自引:0,他引:1  
A systematic investigation of the parameters that affect the efficiency of immobilizing heparinase onto cyanogen bromide activated crosslinked 8% agarose beads was conducted. Two experimental measures, the “fraction bound” and the “fraction retained,” were used to monitor the coupling efficiency. The fraction bound is the portion of the total initial enzyme that is bound to the agarose gel. The fraction retained is the fraction of bound enzyme that is active. The product of the two measures indicates the coupling efficiency. The activity of the immobilized heparinase was measured under conditions free of both internal and external mass transfer limitations, and thus, the fraction retained represents the true immobilized enzyme activity. Increasing the degree of activation of the beads results in an increase in the fraction bound, the fraction retained, and consequently, the coupling efficiency. As the ratio of enzyme solution to gel volume increases from 1.5 to 2.2, the fraction bound remains constant but the fraction retained decreases (heparinase concentration; 0.15 mg/mL and degree of activation; 9.5 μmol of cyanate esters/g of gel). At volume ratios greater than 2.2, both the fraction bound and the fraction retained decline continuously. Changing the heparinase concentration in the coupling solution changes the coupling efficiency in a manner similar to that of the volume ratio change. When heparin is added during the coupling process, the fraction bound declines as the heparin concentration increases, whereas the fraction retained increases up to a heparin concentration of 12 mg/mL and decreases thereafter. When arginine, lysine, and glycine are used to block the unreacted cyanate ester groups after the coupling process, the immobilized heparinase shows different pH optima of 6.5, 6.9, and 7.2, respectively. Based upon these findings, a protocol to optimize heparinase immobilization is developed.  相似文献   
122.
β-Pinene was polymerized with H2O/BCl3 (protic) and p-dicumyl chloride and sym-tricumyl chloride (nonprotic) inifer systems in CH2Cl2 or CH2Cl2/n-C6H14 solvents from ?10 to ?70°C. The effect of solvent polarity, temperature, and monomer and inifer concentration on conversions and molecular weights was investigated. Low conversions and molecular weights, M?n = 1300–2500, obtained under these conditions suggest rapid termination.  相似文献   
123.
From the conversion–composition data of Gruber and Elias, the reactivity ratios of styrene (M1) and methyl methacrylate (M2) were calculated to be r1 = 0.55 ± 0.02 and r2 = 0.58 ± 0.06 at 90°C. The least-squares method was then used on these and literature values at other temperatures to obtain the Arrhenius expressions: In r1 = 0.04736 – (235.45/T), and ln r2 = 0.1183 – (285.36/T). Using literature values for the homopolymerization steps, A11 = 2.2 × 107l./mole-sec., E11 = 7.8 kcal./mole, and A22 = 0.51 × 107 l./mole-sec.?1, E22 = 6.3 kcal./mole, activation energies and frequency factors were then calculated for the cross-polymerization steps: A12 = 2.1 × 107 l./mole-sec., E12 = 7.3 kcal./mole, and A21 = 0.45 × 107 l./mole-sec., E21 = 5.7 kcal./mole.  相似文献   
124.
Cu (II) complexes with the sterically hindered diphenol derivatives 3,5-di(tert-butyl)-1,2-benzenediol (I), 4,6-di(tert-butyl)-1,2,3-benzenetriol (II) and the sulfur-containing 4,6-di(tert-butyl)-3-(2-hydroxyethylsulfanyl)-1,2-benzenediol (III) and 2-[4,6-di(tert-butyl)-2,3-dihydroxyphenylsulfanyl]acetic acid (IV) have been synthesized and characterized by elemental analysis, TG/DTA, FT-IR, ESR, XPS, XPD and conductivity measurements. Compounds I–III can coordinate in their singly deprotonated forms and act as bidentate ligands. These compounds yield Cu (II) complexes of the stoichiometry Cu(L)2, which have square planar geometry (g| > g > ge). Unlike them, compound IV behaves as a terdentate ligand, and its complex Cu(LIV)2 has distorted octahedral geometry. According to ESR data, only the Cu(LII)2 complex contains a very small amount of phenoxyl radicals. Antimicrobial activities of these ligands and their respective Cu (II) complexes have been determined with respect to Gram-positive and Gram-negative bacteria, as well as on yeasts. Their phytotoxic properties against Chlorella vulgaris 157 were also examined.  相似文献   
125.
The title mol­ecule, C11H12O3, is almost planar, with an average deviation of the C and O atoms from the least‐squares plane of 0.146 (4) Å. The geometry about the C=C bond is trans. The phenyl ring and –COOCH3 group are twisted with respect to the double bond by 9.3 (3) and 5.6 (5)°, respectively. The endocyclic angle at the junction of the propenoate group and the phenyl ring is decreased from 120° by 2.6 (2)°, whereas two neighbouring angles around the ring are increased by 2.3 (2) and 0.9 (2)°. This is probably associated with the charge‐transfer interaction of the phenyl ring and –COOCH3 group through the C=C double bond. The mol­ecules are joined together through C—H?O hydrogen bonds between the methoxy and ester groups to form characteristic zigzag chains extended along the c axis.  相似文献   
126.
To probe the mechanism of gas-phase oligonucleotide ion fragmentation, modified oligonucleotides were studied using matrix-assisted laser desorption/ionization. The oligonucleotides were of the form 5'-TTTTXTTTTT, where X was a modified nucleotide. Modifications included substitution of hydroxy, methoxy, amino, and allyl groups at the 2'-position of the deoxyribose. The modified ribose contained adenine, guanine, cytosine, or uracil bases. For comparison, we studied oligomers where X was an unmodified adenosine, guanosine, cytidine, thymidine, or uridine deoxyribonucleotide. We found a very strong dependence of the matrix-to-analyte ratio on fragmentation for these oligomers. Analysis of these modifications suggests that the initial fragmentation step in MALDI-MS involves a two-step (E1) elimination of the base.  相似文献   
127.
The standard (p(o) = 0.1 MPa) molar enthalpy of formation of crystalline 2H-1,3-benzoxazine-2,4(3H)dione was measured, at T= 298.15 K, by static bomb calorimetry and the standard molar enthalpy of sublimation, at T= 298.15 K, was obtained using Calvet microcalorimetry. These values were used to derive the standard molar enthalpy of formation in the gaseous phase, T= 298.15 K, of -(401.0 +/- 3.5) kJ mol(-1). The standard molar enthalpy of sublimation of isatoic anhydride was recalculated, and our recommended experimental value for the standard molar enthalpy of formation in the gaseous phase, T= 298.15 K, is -(406.2 +/- 3.4) kJ mol(-1). Density functional calculations for the two isomers 2H-1,3-benzoxazine-2,4(3H)dione and isatoic anhydride, in which the ring nitrogen and oxygen have been transposed, confirm the experimental evidence of nearly identical thermochemical stability for these isomers.  相似文献   
128.
2’-(4-Pyridyl)- and 2’-(4-hydroxyphenyl)-TCIBPs (TCIBP = 3,3’,5,5’-tetrachloro-2-iodo-4,4’-bipyridyl) are chiral compounds that showed interesting inhibition activity against transthyretin fibrillation in vitro. We became interested in their enantioseparation since we noticed that the M-stereoisomer is more effective than the P-enantiomer. Based thereon, we recently reported the enantioseparation of 2’-substituted TCIBP derivatives with amylose-based chiral columns. Following this study, herein we describe the comparative enantioseparation of both 2’-(4-pyridyl)- and 2’-(4-hydroxyphenyl)-TCIBPs on four cellulose phenylcarbamate-based chiral columns aiming to explore the effect of the polymer backbone, as well as the nature and position of substituents on the side groups on the enantioseparability of these compounds. In the frame of this project, the impact of subtle variations of analyte and polysaccharide structures, and mobile phase (MP) polarity on retention and selectivity was evaluated. The effect of temperature on retention and selectivity was also considered, and overall thermodynamic parameters associated with the analyte adsorption onto the CSP surface were derived from van ’t Hoff plots. Interesting cases of enantiomer elution order (EEO) reversal were observed. In particular, the EEO was shown to be dependent on polysaccharide backbone, the elution sequence of the two analytes being P-M and M-P on cellulose and amylose tris(3,5-dimethylphenylcarbamate), respectively. In this regard, a theoretical investigation based on molecular dynamics (MD) simulations was performed by using amylose and cellulose tris(3,5-dimethylphenylcarbamate) nonamers as virtual models of the polysaccharide-based selectors. This exploration at the molecular level shed light on the origin of the enantiodiscrimination processes.  相似文献   
129.
130.
A rigorous and practical methodology for evaluating thermal-equilibrium density matrices, finite-temperature time-dependent expectation values, and time-correlation functions is described. The method involves an extension of the matching-pursuit/split-operator-Fourier-transform method to the solution of the Bloch equation via imaginary-time propagation of the density matrix and the evaluation of Heisenberg time-evolution operators through real-time propagation in dynamically adaptive coherent-state representations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号