首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5794篇
  免费   186篇
  国内免费   12篇
化学   4283篇
晶体学   68篇
力学   58篇
数学   878篇
物理学   705篇
  2021年   51篇
  2020年   70篇
  2019年   59篇
  2018年   36篇
  2017年   45篇
  2016年   115篇
  2015年   125篇
  2014年   133篇
  2013年   220篇
  2012年   273篇
  2011年   310篇
  2010年   196篇
  2009年   202篇
  2008年   303篇
  2007年   224篇
  2006年   257篇
  2005年   226篇
  2004年   237篇
  2003年   187篇
  2002年   169篇
  2001年   106篇
  2000年   92篇
  1999年   85篇
  1998年   78篇
  1997年   84篇
  1996年   95篇
  1995年   77篇
  1994年   82篇
  1993年   71篇
  1992年   74篇
  1991年   80篇
  1990年   64篇
  1989年   63篇
  1988年   61篇
  1987年   60篇
  1986年   70篇
  1985年   96篇
  1984年   98篇
  1983年   63篇
  1982年   84篇
  1981年   100篇
  1980年   85篇
  1979年   76篇
  1978年   87篇
  1977年   57篇
  1976年   74篇
  1975年   58篇
  1973年   56篇
  1971年   42篇
  1970年   37篇
排序方式: 共有5992条查询结果,搜索用时 421 毫秒
71.
We describe a simple method for patterning biomolecular films on surfaces with high resolution. A conventional polymeric resist is structured by electron-beam lithography. The exposed and developed patterns are then used for the directed self-assembly (SA) of a first molecule from solution. Removal of the remaining resist allows the SA of a second species. We illustrate the potential of the approach by assembling on gold (Au) substrates two alkanethiols of contrasting terminal functionality. The patterns have dimensions from the micrometer range down to 40 nm and an edge resolution of 3.5 nm.  相似文献   
72.
Chlorothionitrene Complexes of Tungsten. Crystal Structure of [WCl4(NSCl)]2 Tungsten hexachloride reacts with trithiazyl chloride, (NSCl)3, yielding the chlorothionitrene complex [WCl4(NSCl)]2, from which AsPh4[WCl5(NSCl)] can be obtained by reaction with AsPh4Cl. Both complexes are characterized by their i.r. spectra. The crystal structure of [WCl4(NSCl)]2 was determined and refined with X-ray diffraction data (1059 reflexes, R = 0.055). It crystallizes in the monoclinic space group P21/n with the lattice constants a = 1523, b = 904, c = 583 pm and β = 91.35°. In the unit cell there are two centrosymmetric [WCl4(NSCl)]2 molecules in which the W atoms are linked via two chloro bridges; short and long W? Cl distances (244 and 265 pm) alternate in the W2Cl2 ring, the NSCl groups are found in the trans positions to the longer W? Cl bonds. The WNS bond angle (175°) and short bond distances correspond to a formulation .  相似文献   
73.
Alkylation of the aza-pseudophenalenone1 with trialkyloxoniumtetrafluoroborates yield the azapseudophenaleniumsalts2 a,2 b, reactions with C-nucleophiles the compounds3 a 3 e, the dihydro-azapseudophenalenone4 reacts with malodinitrile-sodium to5,1 b and1 d with tetrachlorocyclopentadiene to the fulvalenes6 a,6 b,1 b was olefinated withtert. butyl-cyano-ketene to theZ-isomer7.
Meinem lieben Kollegen und Freund, Herrn Prof. Dr.Werner Heimann, Karlsruhe, mit herzlichen Wünschen zum 70. Geburtstag gewidmet.  相似文献   
74.
18-crown-6 reacts with TiCl3 in CH2Cl2 to form a complex in which the crown ether functions as a tridentate ligand. Addition of moist hexane affords a molecular complex in which the crown ether functions as a bidentate ligand. A water molecule is bonded directly to the titanium atom and is further hydrogen bonded to three of the oxygen atoms of the crown. The deep blue crystals of the CH2Cl2 adduct belong to the monoclinic space groupP21/n witha=13.481(8),b=8.021(5),c=21.425(9) Å, =97.32(5)°, and calc = 1.51 g cm–3 forZ=4. Refinement led to a conventionalR value of 0.040 based on 873 observed reflections. The Ti–O bond distances for the crown oxygen atoms are 2.123(8) and 2.154(9) Å, while the oxygen atom of the water molecule is bonded at 2.072(8) Å. The octahedral coordination sphere of the titanium atom is completed by the three chlorine atoms at distances of 2.340(5), 2.352(4), and 2.373(4) Å. Supplementary Data relating to this article are deposited with the British Library as Supplementary Publication No. SUP 82034 (10 pages).  相似文献   
75.
Electrons produced in a gaseous, liquid, or solid solvent are called dissolved electrons or excess electrons. These excess electrons can exist as quasi-free particles of high mobility in a delocalized state, comparable with electrons in a metal; or as bound particles of low mobility they can be localized within narrow limits—in a solvent cavity formed by repulsive forces. Localized electrons can also be solvated like normal ions. Characteristically, such solvated electrons exhibit broad and extensive absorption spectra in the visible to near infrared spectral range. The localized and delocalized states of the excess electrons can be in equilibrium with each other, such that a continuous transition of the properties between the limiting extremes can be observed. The reactions of the excess electrons with suitable acceptors (substrates) are initiated by an attachment-detachment equilibrium A + e? ? A? which is followed by further chemical rearrangements. The rate constants of these reactions vary by more than 15 powers of ten depending on the substrates and the solvents. Most of the properties of excess electrons in solution can be interpreted by means of a model which is easily understandable but quantitatively evaluated only with considerable effort.  相似文献   
76.
THF-gramicidin hybrids 2-4 with the L-THF amino acid 1 in positions 11 and 12 and compounds 5-8 with the D-THF amino acid ent-1 in positions 10 and 11 were synthesized and their ion channel properties were studied by single-channel-current analysis. The replacement of positions 11 and 12 by the L-THF amino acid 1 gave a strongly reduced channel performance. In contrast, replacement of positions 10 and 11 by the D-THF amino acid ent-1 gave rise to new and interesting channel properties. For the permeability ratios, the ion selectivity shifts from Eisenman I towards Eisenman III selectivity and the channels display ms-dynamics. Most remarkable is the asymmetric compound 8, which inserts selectively into a DPhPC membrane and displays voltage-directed gating dynamics.  相似文献   
77.
Inkjet printing represents a highly promising polymer deposition method, which is used for, for example, the fabrication of multicolor polyLED displays and polymer-based electronics parts. The challenge is to print well-defined polymer structures from dilute solution. We have eliminated the formation of ring stains by printing nonvolatile acetophenone-based inks on a perfluorinated substrate using different polymers. (De)pinning of the contact line of the printed droplet, as related to the choice of solvent, is identified as the key factor that determines the shape of the deposit, whereas the choice of polymer is of minor importance. Adding 10 wt % or more of acetophenone to a volatile solvent (ethyl acetate)-based polymer solution changes the shape of the deposit from ring-like to dot-like, which may be due to the establishment of a solvent composition gradient. Arrays of closely spaced dots have also been printed. The size of the dots is considerably smaller than the nozzle diameter. This may prove a potential strategy for the inkjet printing of submicrometer structures.  相似文献   
78.
A new multiple-layer matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) sample-spotting technique is described. This fast and easy technique was evaluated with poly(ethylene glycol) (PEG) standards and optimized conditions for these synthetic polymers were obtained. PEGs up to 35 kDa were detectable with this approach and single monomer resolution was observed up to 20 kDa. The spotting was performed using a multiple-layer approach, which offers the capability of complex sample preparation without the requirement of premixing the different matrix, analyte and doping salt solutions. The technique reduces the time required for sample preparation and offers high flexibility with respect to sample composition and solvents utilized for the crystallization of the compounds. The technique is thus perfectly suited for applications in combinatorial material research.  相似文献   
79.
A pressure‐controlled procedure for the SN1 reaction of rac‐1‐[(dimethylamino)methyl]‐2‐(tributylstannyl)ferrocene ( 1 ) to rac‐1‐(phthalimidomethyl)‐2‐(tributylstannyl)ferrocene ( 2 ) was developed. Pd0‐Catalyzed Stille coupling of 2 with iodobenzene afforded rac‐1‐phenyl‐2‐(N‐phthalimidomethyl)ferrocene ( 5 ) in 74% yield; after trace enrichment by crystallization of the combined mother liquors, one single crystal of each, 5 , catalysis intermediate trans‐iodo(σ‐phenyl)bis(triphenylarsino)palladium(II) ( 7 ), trans‐diiodobis(triphenylarsino)palladium(II) ( 8 ), and rac‐2,2′‐bis(phthalimidomethyl)‐1,1′‐biferrocene ( 9 ) could be isolated by crystal sorting under a microscope and characterized by X‐ray crystal structure analysis. Furthermore, 5 was deprotected to amine ( 11 ), which does even survive the Birch reduction to rac‐1‐(aminomethyl)‐2‐(cyclohexa‐2,5‐dienyl)ferrocene ( 12 ).  相似文献   
80.
The interactions of [Pt(en)Cl(ACRAMTU-S)](NO3)2 (PT-ACRAMTU, en = ethane-1,2-diamine, ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) with adenine in DNA have been studied using a combination of analytical and high-resolution structural methods. For the first time, a cytotoxic platinum(II) complex has been demonstrated to form adducts in the minor groove of DNA through platination of the adenine-N3 endocyclic nitrogen. An acidic depurination assay was developed that allowed the controlled and selective (pH 2, 60 degrees C, 12 h) release of platinum-modified adenine from drug-treated nucleic acid samples. From the digested mixtures, three adducts were isolated by semipreparative reverse phase high-performance liquid chromatography and studied by electrospray ionization mass spectrometry (in-line LC-MS), variable-pH 1H NMR spectroscopy, and, where applicable, X-ray crystallography. The three species were identified as the N7 (A-I), N3 (A-II), and N1 (A-III) linkage isomers of [Pt(en)(ACRAMTU-S)(adenine)]3+ (A). Incubations carried out with the single- and double-stranded model sequences, d(TA)5 and d(TA)15, as well as native DNA indicate that the adduct profiles (A-I:A-II:A-IIIratios) are sensitive to the nature of the nucleic acid template. A-II was found to be a double-strand specific adduct. The crystal structure of this adduct has been determined, providing ultimate evidence for the N3 connectivity of platinum. A-II crystallizes in the triclinic space group P in the form of centrosymmetric dimers, {[Pt(en)(ACRAMTU-S)(adenine-N3)]2}6+. The cations are stabilized by a combination of adenine-adenine base pairing (N6...N1 2.945(5) A) and mutual acridine-adenine base stacking. Tandem mass spectra and 1H chemical shift anomalies indicate that this type of self-association is not merely a crystal packing effect but persists in solution. The monofunctional platination of adenine at its N7, N3, and N1 positions in a significant fraction of adducts breaks a longstanding paradigm in platinum-DNA chemistry, the requirement for nucleophilic attack of guanine-N7 as the principal step in cross-link formation. The biological consequences and potential therapeutic applications of the unique base and groove recognition of PT-ACRAMTU are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号