首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3509篇
  免费   79篇
  国内免费   41篇
化学   2331篇
晶体学   29篇
力学   78篇
数学   407篇
物理学   784篇
  2021年   48篇
  2020年   53篇
  2019年   37篇
  2018年   26篇
  2017年   20篇
  2016年   51篇
  2015年   46篇
  2014年   48篇
  2013年   147篇
  2012年   138篇
  2011年   183篇
  2010年   114篇
  2009年   70篇
  2008年   170篇
  2007年   185篇
  2006年   175篇
  2005年   145篇
  2004年   148篇
  2003年   131篇
  2002年   132篇
  2001年   89篇
  2000年   81篇
  1999年   62篇
  1998年   47篇
  1997年   53篇
  1996年   60篇
  1995年   45篇
  1994年   52篇
  1993年   51篇
  1992年   51篇
  1991年   32篇
  1990年   43篇
  1989年   49篇
  1988年   31篇
  1987年   27篇
  1986年   30篇
  1985年   59篇
  1984年   46篇
  1983年   42篇
  1982年   54篇
  1981年   40篇
  1980年   50篇
  1979年   42篇
  1978年   55篇
  1977年   44篇
  1976年   39篇
  1975年   37篇
  1974年   22篇
  1973年   39篇
  1971年   16篇
排序方式: 共有3629条查询结果,搜索用时 375 毫秒
121.
Products from combinatorial libraries generally share a common core structure that can be exploited to improve the efficiency of virtual high-throughput screening (vHTS). In general, it is more efficient to find a method that scales with the total number of reagents (Sigma growth) rather with the number of products (Pi growth). The OptiDock methodology described herein entails selecting a diverse but representative subset of compounds that span the structural space encompassed by the full library. These compounds are docked individually using the FlexX program (Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. J. Mol. Biol. 1995, 251, 470-489) to define distinct docking modes in terms of reference placements for combinatorial core atoms. Thereafter, substituents in R-cores (consisting of the core structure substituted at a single variation site) are docked, keeping the core atoms fixed at the coordinates dictated by each reference placement. Interaction energies are calculated for each docked R-core with respect to the target protein, and energies for whole compounds are calculated by finding the reference core placement for which the sum of corresponding R-core energies is most negative. The use of diverse whole compounds to define binding modes is a key advantage of the protocol over other combinatorial docking programs. As a result, OptiDock returns better-scoring conformers than does serially applied FlexX. OptiDock is also better able to find a viable docked pose for each library member than are other combinatorial approaches.  相似文献   
122.
Two monometayl- and four dimethyl-triazolocoumarin isomers were characterized by their electron impact mass spectra and by low-energy collision experiments performed on molecular ions M+˙ and other fragment ions with an ion-trap mass spectrometer. High-energy collision-activated dissociation measurements were performed on the protonated [M + H]+ and deprotonated [M ? H]? molecular ion obtained by fast atom bombardment and M+˙ species produced by electron impact ionization on a double-focusing, reverse-geometry instrument. The data obtained allowed unequivocal structural identification of all the compounds investigated.  相似文献   
123.
In the simulation of a liquid drop it is expensive to calculate the excess pressure and obtain the surface tension by the Laplace formula. We use the Kelvin formula which only requires the vapour density, or at most the virial pressure. Some results are given for a Lennard-Jones 12-6 fluid.  相似文献   
124.
[reaction: see text]. The regioselective and enantiospecific rhodium-catalyzed allylic amination of secondary allylic carbonates 1 with N-(arylsulfonyl)anilines provides a convenient process for the construction of arylamines 2. This method, in conjunction with ring-closing metathesis and radical cyclization reactions, allows the direct construction of biologically relevant pharmacophores as exemplified by the construction of dihydroquinoline and dihydrobenzo[b]indoline derivatives.  相似文献   
125.
Evans OR  Lin W 《Inorganic chemistry》2000,39(10):2189-2198
Hydro(solvo)thermal reactions between cadmium(II) perchlorate and 4-pyridinecarboxaldehyde in the presence of various guest molecules have resulted in a series of 3-D coordination polymers based on tricadmium carboxylates [Cd6(isonicotinate)10(H2O)2](ClO4)2(EtOH)4(H2O)4, 1, [Cd3(isonicotinate)5 (EtOH)](ClO4)(EtOH)(4-nitroaniline)0.5, 2, and [Cd6(isonicotinate)11](ClO4)(EtOH)2(H2O)2(4-cyanopyridine)0.5, 3. X-ray single crystal structure determinations show that they exhibit similar pillared, 3D framework structures based on tricadmium carboxylate building blocks. Rectangular channels are clearly present in these polymeric networks and are occupied by perchlorate anions and disordered guest molecules. Quantitative NMR and X-ray powder diffraction studies and thermogravimetric analyses (TGA) reveal that these coordination networks are capable of accommodating different guest molecules. More significantly, the guest molecules can be readily removed via evacuation to result in nanoporous polymeric coordination networks retaining the framework structures of the pristine solids. Crystal data for 1: monoclinic space group P2(1)/n, a = 19.041(1) A, b = 23.654(1) A, c = 21.568(1) A, beta = 95.440(1) degrees, and Z = 4. Crystal data for 2: triclinic space group P1, a = 12.050(1) A, b = 12.277(1) A, c = 19.103(1) A, alpha = 91.669(1) degrees, beta = 96.850(1) degrees, gamma = 117.945(1) degrees, and Z = 2. Crystal data for 3: monoclinic space group P2(1)/n, a = 19.038(1) A, b = 23.834(1) A, c = 21.756(1) A, beta = 97.580(1) degrees, and Z = 4.  相似文献   
126.
The ligation properties of three new upper-rim-substituted calix[4]arene ligands, 5,17-bis(hydroxymethyl)-tetra-n-butoxycalix[4]arene ((HOCH2)2-nBu4Clx, 7), 5,17-bis((diphenylphosphinito)methoxy)-tetra-n-butoxycalix[4]arene ((PPh2OCH2)2-nBu4Clx, 8), and 5,17-bis((diphenylphosphino)methyl)-tetra-n-butoxycalix[4]arene ((PPh2CH2)2-nBu4Clx, 10) are reported herein. The newly prepared compounds differ from previously reported diametrically substituted calix[4]arene derivatives in that the lower-rim substituent was n-butyl. The presence of this lower-rim substituent did not reduce the inherent crystallinity of these complexes as purification of all materials occurred via simple crystallizations. The key precursor for the syntheses of 8 and 10 was 7, acquisition of which occurred in six steps starting from tetra-tert-butylcalix[4]arene, 1. Calix[4]arene derivatives include, tetra-n-butoxycalix[4]arene (nBu4Clx, 3), 5,11,17,23-tetrabromo-tetra-n-butoxycalix[4]arene (Br4-nBu4Clx, 4), 5,17-dibromo-tetra-n-butoxycalix[4]arene (Br2-nBu4Clx, 5), 5,17-bis(formyl)-tetra-n-butoxycalix[4]arene ((CHO)2-nBu4Clx, 6), and 5,17-bis(chloromethyl)-tetra-n-butoxycalix[4]arene ((ClCH2)2-nBu4Clx, 9), all of which were synthesized using modifications of existing procedures. Characterization of all compounds occurred, when possible, using 1H, 13C, and 31P NMR, elemental analyses, FAB-MS, ESI-MS, FT-IR, and X-ray crystallography. The solid-state structures of all calix[4]arene intermediates and ligands showed that the annulus adopted the pinched-cone conformation in which the average C(5)...C(17) intraannular separation was 4.5 +/- 0.4 A. Reaction of 7 with CpTiMe3 yielded the cis-chelate, CpTi(Me)[(OCH2)2-nBu4Clx] (11), quantitatively. Data obtained using ESI-MS (positive-ion mode) confirmed the monomer formulation showed above, and 1H NMR spectra provided sufficient information to deduce the nature of the Ti coordination sphere. Reaction of 8 with cis-Cl2Pd(NCPh)2 in refluxing benzene afforded cis-Cl2Pd[(PPh2OCH2)2-nBu4Clx] (12) in good yields. The monomeric identity of this compound was verified by both X-ray crystallography and positive-ion ESI-MS. The cis-bidentate calix[4]arene ligand did not undergo any noticeable contortion upon chelation of the PdCl2 fragment. Acid-promoted decomposition of 12 occurred in the presence of adventitious HCl and gaseous HCl, and the products of this decomposition were 9 and [mu2-ClPd(PPh2OH)(PPh2O)]2. In addition, chelates of 8 that contained Mo(CO)3L (L = NCMe (14a), NCEt (14b), and CO (14c)) showed that the mode of coordination was relatively insensitive to the identity of the metal. X-ray crystallography afforded views of the solid-state structures of 14b,c and, like 12, showed that the Mo(CO)3L fragment resided above the pinched-cone of the calix[4]arene. 1H NMR revealed that C-H/pi interactions existed between L (14a,b) and a phenyl ring of the coordinated phosphinite. Finally, the bis(diphenylphosphine)calix[4]arene ligand (10) readily coordinated the Mo(CO)3L species, but the reaction did not go to completion, as evidenced by 1H NMR, even after a 5 day reaction time. Data suggest that the product is similar to that observed for 12 and 14, but the incomplete reaction complicated attempts to obtain pure material and prohibited definitive assignment of the coordination array.  相似文献   
127.
The reactivity of W(NPh)(o-(Me3SiN)2C6H4)(py)2 and W(NPh)(o-(Me3SiN)2C6H4)(pic)2 (py=pyridine; pic=4-picoline) with unsaturated substrates has been investigated. Treatment of W(NPh)(o-(Me3SiN)2C6H4)(py)2 with diphenylacetylene or 2,3-dimethyl-1,3-butadiene generates W(NPh)(o-(Me3SiN)2C6H4)(eta2-PhCCPh) and W(NPh)(o-(Me3SiN)2C6H4)(eta4-CH2=C(Me)C(Me)=CH2), respectively, while the addition of ethylene to W(NPh)(o-(Me3SiN)2C6H4)(py)2 generates the known metallacycle W(NPh)(o-(Me3SiN)2C6H4)(CH2CH2CH2CH2). The addition of 2 equiv of acetone to W(NPh)(o-(Me3SiN)2C6H4)(pic)2 provides the azaoxymetallacycle W(NPh)(o-(Me3SiN)2C6H4)(OCH(Me)2)(OC(Me)2-o-C5H3N-p-Me), the result of acetone insertion into the ortho C-H bond of picoline. Similarily, the addition of 2 equiv of RC(O)H [R=Ph, tBu] to W(NPh)(o-(Me3SiN)2C6H4)(py)2 generates W(NPh)(o-(Me3SiN)2C6H4)(OCH2R)(OCHR-o-C5H4N) [R=Ph, tBu,]. In contrast, reaction between W(NPh)(o-(Me3SiN)2C6H4)(py)2 and 2-pyridine carboxaldehyde yields the diolate W(NPh)(o-(Me3SiN)2C6H4)(OCH(C5H4N)CH(C5H4N)O). The synthesis of W(NPh)(o-(Me3SiN)2C6H4)(PMe3)(py)(eta2-OC(H)C6H4-p-Me), formed by the addition of p-tolualdehyde to a mixture of W(NPh)(o-(Me3SiN)2C6H4)(py)2 and PMe3, suggests that an eta2-aldehyde intermediate is involved in the formation of the azaoxymetallacycle, while the isolation of W(NPh)(o-(Me3SiN)2C6H4)(Cl)(OC(Me)(CMe3)-o-C5H4N), formed by the reaction of pinacolone with W(NPh)(o-(Me3SiN)2C6H4)(py)2, in the presence of adventitious CH2Cl2, suggests that the reaction proceeds via the hydride W(NPh)(o-(Me3SiN)2C6H4)(H)(OC(Me)(CMe3)-o-C5H4N).  相似文献   
128.
Covalent modifiers of proteins are of importance in chemical proteomics, an emerging chemical technology used to assign protein function. In this study, high-field (1)H NMR techniques were used to analyze the reaction of the bioactive compound, 2,3-bis(bromomethyl)quinoxaline 1,4-dioxide, with amines (a model system for proteins containing nitrogen-based nucleophiles). Unexpectedly, the results show that a double nucleophilic substitution reaction involving 2 equiv of the amine is preferred to an intramolecular cyclization pathway. A direct comparison with the reaction carried out on a substrate lacking the N-oxide functional groups is also provided. X-ray crystal structures and computational studies are used to rationalize the observed differences in reactivity between the two systems.  相似文献   
129.
130.
The slow addition of NO to a CCl(4) solution of VCl(4) reproducibly forms the known polymer [V(NO)(3)Cl(2)](n)() as a dark brown powder. Treatment of a CH(2)Cl(2) suspension of [V(NO)(3)Cl(2)](n)() with excess THF generates mer-(THF)(3)V(NO)Cl(2) (1) which can be isolated as an orange crystalline material in 55% yield. The reaction of 1 with excess MeCN or 1 equiv of trimpsi (trimpsi = (t)BuSi(CH(2)PMe(2))(3)) provides yellow-orange (MeCN)(3)V(NO)Cl(2)xMeCN (2xMeCN) and yellow (trimpsi)V(NO)Cl(2) (3), respectively. A black, crystalline complex formulated as [NO][VCl(5)] (4) is formed by the slow addition of NO to neat VCl(4) or by the reaction of excess ClNO with neat VCl(4). Complex 4 is extremely air- and moisture-sensitive, and IR spectroscopy suggests that in solutions and in the gas phase it dissociates back into VCl(4) and ClNO. Reaction of 4 with excess [NEt(3)(CH(2)Ph)]Cl generates [NEt(3)(CH(2)Ph)](2)[VCl(6)]x2CH(2)Cl(2) (5x2CH(2)Cl(2)), which can be isolated as deep-red crystals in 51% yield. All new complexes have been characterized by conventional spectroscopic methods, and the solid-state molecular structures of 1, 2xMeCN, and 5x2CH(2)Cl(2) have been established by single-crystal X-ray diffraction analyses.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号