首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   23篇
  国内免费   1篇
化学   523篇
晶体学   1篇
力学   4篇
数学   16篇
物理学   72篇
  2022年   6篇
  2021年   3篇
  2020年   2篇
  2019年   14篇
  2018年   4篇
  2017年   2篇
  2016年   13篇
  2015年   13篇
  2014年   18篇
  2013年   20篇
  2012年   25篇
  2011年   46篇
  2010年   24篇
  2009年   25篇
  2008年   34篇
  2007年   46篇
  2006年   34篇
  2005年   44篇
  2004年   33篇
  2003年   26篇
  2002年   22篇
  2001年   10篇
  2000年   20篇
  1999年   3篇
  1998年   4篇
  1997年   8篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   5篇
  1990年   3篇
  1989年   5篇
  1988年   9篇
  1987年   7篇
  1986年   8篇
  1985年   6篇
  1984年   6篇
  1983年   5篇
  1982年   3篇
  1981年   5篇
  1980年   5篇
  1978年   4篇
  1977年   5篇
  1975年   3篇
  1973年   5篇
  1968年   3篇
  1966年   2篇
  1965年   2篇
  1963年   1篇
排序方式: 共有616条查询结果,搜索用时 15 毫秒
121.
Ferrite nanobeads were synthesized from an aqueous solution utilizing Fe2+ to Fe3+ oxidation for use as magnetic carriers in bioscreening, bio-molecular recognition and anti-cancer diagnosis and therapy. The beads had a crystal structure that was intermediate between Fe3O4 and γ-Fe2O3. Functional biomolecules were strongly conjugated onto the surfaces of the ferrite beads via COOH and SH groups. The addition of ferrite seed crystals (3-8 nm in size) together with a disaccharide enabled the synthesis of monodisperse, spherical ferrite beads with average diameters () between 50 and 150 nm and relative deviation Δd/=9-16%. Hollow ferrite nano-spheres (=150-450 nm, Δd/≈10%) were prepared using silica spheres as templates, which were dissolved in NaOH solution. Ferrite beads 40 nm in size were encapsulated in polymer spheres of styrene and polymerized glycidyl methacrylate (poly-GMA), 184±9 nm in diameter. They were used for high throughput bioscreening system for affinity purification of target proteins which make specific bindings to anti-cancer drugs, porphyrins, environment hormones, etc.  相似文献   
122.
We report the first tunable bifunctional surface of silica–alumina‐supported tertiary amines (SA–NEt2) active for catalytic 1,4‐addition reactions of nitroalkanes and thiols to electron‐deficient alkenes. The 1,4‐addition reaction of nitroalkanes to electron‐deficient alkenes is one of the most useful carbon–carbon bond‐forming reactions and applicable toward a wide range of organic syntheses. The reaction between nitroethane and methyl vinyl ketone scarcely proceeded with either SA or homogeneous amines, and a mixture of SA and amines showed very low catalytic activity. In addition, undesirable side reactions occurred in the case of a strong base like sodium ethoxide employed as a catalytic reagent. Only the present SA‐supported amine (SA–NEt2) catalyst enabled selective formation of a double‐alkylated product without promotions of side reactions such as an intramolecular cyclization reaction. The heterogeneous SA–NEt2 catalyst was easily recovered from the reaction mixture by simple filtration and reusable with retention of its catalytic activity and selectivity. Furthermore, the SA–NEt2 catalyst system was applicable to the addition reaction of other nitroalkanes and thiols to various electron‐deficient alkenes. The solid‐state magic‐angle spinning (MAS) NMR spectroscopic analyses, including variable‐contact‐time 13C cross‐polarization (CP)/MAS NMR spectroscopy, revealed that acid–base interactions between surface acid sites and immobilized amines can be controlled by pretreatment of SA at different temperatures. The catalytic activities for these addition reactions were strongly affected by the surface acid–base interactions.  相似文献   
123.
Let G=(V,E) be a simple undirected graph with a set V of vertices and a set E of edges. Each vertex vV has a demand d(v)Z+, and a cost c(v)R+, where Z+ and R+ denote the set of nonnegative integers and the set of nonnegative reals, respectively. The source location problem with vertex-connectivity requirements in a given graph G asks to find a set S of vertices minimizing vSc(v) such that there are at least d(v) pairwise vertex-disjoint paths from S to v for each vertex vV?S. It is known that the problem is not approximable within a ratio of O(lnvVd(v)), unless NP has an O(NloglogN)-time deterministic algorithm. Also, it is known that even if every vertex has a uniform cost and d1=4 holds, then the problem is NP-hard, where d1=max{d(v)|vV}.In this paper, we consider the problem in the case where every vertex has uniform cost. We propose a simple greedy algorithm for providing a max{d1,2d1?6}-approximate solution to the problem in O(min{d1,|V|}d1|V|2) time, while we also show that there exists an instance for which it provides no better than a (d1?1)-approximate solution. Especially, in the case of d1?4, we give a tight analysis to show that it achieves an approximation ratio of 3. We also show the APX-hardness of the problem even restricted to d1?4.  相似文献   
124.
Six phenylalanine analogues containing 2'-methyl-, 2',6'-dimethyl-, 2'-ethyl-6'-methyl-, 2'-isopropyl-6'-methyl-, 2',4',6'-trimethyl-, and 3',5'-dimethyl-L-phenylalanine were synthesized enantioselectively through asymmetric hydrogenation of acetamidoacrylate derivatives. Enzymatic digestion and X-ray analysis supported the L-configuration of the phenylalanine derivatives obtained.  相似文献   
125.
(+)-18-crown-6 tetracarboxylic acid (18C6H4) has been used as a chiral selector for D/L-amino acids in HPLC, where L-isomer is usually eluted prior to D-isomer, except for the case of serine. To clarify why serine exhibits the reverse order for the elusion, the chiral interactions of D- and L-serines with (+)-18C6H4 were investigated by the X-ray single crystal analyses, together with the case of D- and L-glutamic acids, which exhibit the usual elution order in HPLC. The backbone structures (amino, Calpha-H and carboxyl groups) of these four amino acids showed the nearly same interaction with (+)-18C6H4 despite their different chirality. In contrast, the hydroxyl group of L-serine side chain formed a hydrogen bond with the carboxyl group of (+)-18C6H4, whereas such a interaction was not formed for the side chain of D-serine and D- and L-glutamic acids. Thus, it was shown that the exception of D/L-serine from the first elution rule of L-isomer in HPLC is due to the presence and absence of a hydrogen bond formation of its side chain OH group.  相似文献   
126.
Nitromethane was safely applied as a C1 nucleophile for palladium-catalyzed pi-allylic substitution in water with amphiphilic PS-PEG resin-supported phosphine-palladium complexes. Catalytic asymmetric nitromethylation of cycloalkenyl esters was achieved in water as a single reaction medium under heterogeneous conditions using 5 mol % palladium of a PS-PEG resin-supported palladium-imidazoindolephosphine complex to give optically active (cycloalkenyl)nitromethanes with up to 98% ee.  相似文献   
127.
Stable aliphatic bromonium ylides (RfSO2)2C--Br+C6H4-p-CF3 (Rf = CF3, CF3(CF2)3) have been synthesized and structurally characterized for the first time. X-ray crystallographic analyses indicated a ylide structure with an sp2 hybridization of the ylide carbanions and with little double-bond character for the ylidic bond. The bromonium ylides selectively undergo transfer of the aryl group to nitrogen heterocycles, such as pyridines, yielding N-arylpyridinium salts. This is in a marked contrast to the reaction of the iodonium ylides, which produces pyridinium ylides through transylidations.  相似文献   
128.
Positively charged amylopectin, which is a major constituent of cationic starch, was used to modify the inner surface of fused-silica capillaries by addition to the running solution, which was subsequently employed in CE. Capillaries filled with cationic amylopectin derivatives were shown to generate a stable reversed EOF in the investigated range of pH 4-8. Among the additives studied, quaternary ammonium amylopectin derivatives with high amino and low hydroxypropyl groups showed fast electroosmotic mobility and very effectively suppressed the adsorption of proteins. The run-to-run and batch-to-batch repeatability of the procedures were satisfactory with RSDs of 0.5% and 2.4%, respectively. A basic protein, alpha-chymotrypsinogen, migrated within 6 min and the theoretical plate number of it reached 560 000 plates/m.  相似文献   
129.
The high hydrophilicity of cellulose nanocrystals (CNC) may result in poor dispersion in some matrices and solvents. So in this work, two different methodologies were used to reduce the hydrophilicity of CNC. In the first methodology, CNC were acetylated (CNC-Ac) in a mixture of acetic and hydrochloric acid, and in the second methodology, polyethylene glycol (PEG) was adsorbed onto CNC surface (CNC-PEG) under stirring in aqueous solution. CNC obtained by both methods were characterized by transmission electron microscopy (TEM), infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), zeta potential, and thermogravimetric analysis (TGA). Images of TEM showed that the intrinsic morphology of cellulose was preserved after both treatments. FTIR confirmed acetylation reaction by the presence of a new band at 1732 cm?1 (acetate groups) and the consumption of OH groups. XRD showed a reduction in the crystallinity index for both applied methodologies. DLS showed reduced stability in water for CNC-Ac and CNC-PEG. Values of zeta potential changed after acetylation, from ??45 mV (CNC) to ??1 mV (CNC-Ac), and after adsorption of PEG, to ??26.7 mV (CNC-PEG). TGA showed a reduction in the thermal stability after both treatments and a change in the main degradation behavior for CNC-PEG. MTT assays showed that both proposed functionalizations induce cell proliferation, being even more evident for acetylation because, in addition to viability increase with time, it increased with the sample concentration.  相似文献   
130.
Residual chlorines, which originate from HAuCl4, enhance the aggregation of gold (Au) nanoparticles and clusters, preventing the generation of highly active supported Au catalysts. However, the detailed mechanism of residual-chlorine-promoted aggregation of Au is unknown. Herein to investigate this mechanism, density functional theory (DFT) calculations of Au and Cl adsorption onto a reduced rutile TiO2 (110) surface were performed using a generalised gradient approximation Perdew, Burke, and Ernzerhof formula (GGA–PBE) functional and plane-wave basis. Although both Au and Cl atoms prefer to mono-absorb onto oxygen defect sites, Cl atoms have a stronger absorption onto a reduced TiO2 (110) surface, abbreviated as rTiO2 (110) in the following, than Au atoms. Additionally, co-adsorption of a Cl atom and a Au atom or Au nanorod onto a rTiO2 surface was investigated; Cl adsorption onto an oxygen defect site weakens the interaction between a Au atom or Au nanorod and rTiO2 (110) surface. The calculation results suggest that the depletion of interaction between Au and rTiO2 surface is due to strong interaction between Cl atoms at oxygen defect sites and neighbouring bridging oxygen (OB) atoms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号