首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   914篇
  免费   40篇
  国内免费   7篇
化学   599篇
晶体学   5篇
力学   32篇
数学   192篇
物理学   133篇
  2023年   8篇
  2022年   14篇
  2021年   18篇
  2020年   28篇
  2019年   21篇
  2018年   9篇
  2017年   11篇
  2016年   28篇
  2015年   28篇
  2014年   28篇
  2013年   48篇
  2012年   50篇
  2011年   76篇
  2010年   32篇
  2009年   45篇
  2008年   67篇
  2007年   66篇
  2006年   47篇
  2005年   44篇
  2004年   50篇
  2003年   40篇
  2002年   39篇
  2001年   9篇
  2000年   14篇
  1999年   9篇
  1998年   3篇
  1997年   9篇
  1996年   14篇
  1995年   13篇
  1994年   22篇
  1993年   10篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1988年   3篇
  1986年   2篇
  1985年   4篇
  1984年   7篇
  1983年   3篇
  1982年   2篇
  1981年   4篇
  1979年   3篇
  1978年   4篇
  1976年   4篇
  1974年   2篇
  1971年   1篇
  1970年   1篇
  1969年   3篇
  1968年   1篇
  1937年   1篇
排序方式: 共有961条查询结果,搜索用时 390 毫秒
951.
Conventional photochemical upconversion (UC) through homo-geneous triplet-triplet annihilation (TTA) is subject to several enthalpic losses that limit the UC margin. Here, we address one of these losses: the triplet energy transfer (TET) from the sensitizer to the emitter molecules. Usually, the triplet energy level of the emitter is set below that of the sensitizer. In our system, the triplet energy level of the emitter exceeds that of the sensitizer by ~600 cm(-1). Choosing suitable concentrations for the sensitizer and emitter molecules, we can exploit entropy as a driving force for the migration of triplet excitation from the sensitizer to the emitter manifolds. Thereby we obtain a new record for the peak-to-peak TTA-UC energy margin of 0.94 eV. A modified Stern-Volmer analysis yields a TET rate constant of 2.0 × 10(7) M(-1) s(-1). Despite being relatively inefficient, the upconverted fluorescence is easily visible to the naked eye with irradiation intensities as low as 2 W cm(-2).  相似文献   
952.
Abstract

Lipophosphoramide-based cationic lipids are a class of synthetic vectors used for gene delivery that can be produced in multigram scale. The use of trimethylarsonium moiety as a cationic polar head was beneficial to produce efficient gene delivery vectors for in vivo applications. Moreover, this type of cationic lipid can also exhibit some bactericidal effects.  相似文献   
953.
The pretreatment of lignocellulosic materials prior to the enzymatic hydrolysis is essential to the sugar yield and bioethanol production. Dilute acid hydrolysis of black spruce softwood chip was performed in a continuous high temperature reactor followed with steam explosion and mechanical refining. The acid-soaked wood chips were pretreated under different feeding rates (60 and 92 kg/h), cooking screw rotation speeds (7.2 and 14.4 rpm), and steam pressures (12 and 15 bar). The enzymatic hydrolysis was carried out on the acid-insoluble fraction of pretreated material. At lower feeding rate, the pretreatment at low steam pressure and short retention time favored the recovery of hemicellulose. The pretreatment at high steam pressure and longer retention time recovered less hemicellulose but improved the enzymatic accessibility. As a result, the overall sugar yields became similar no matter what levels of the retention time or steam pressure. Comparing with lower feeding rate, higher feeding rate resulted in consistently higher glucose yield in both liquid fraction after pretreatment and that released after enzymatic hydrolysis.  相似文献   
954.
We have prepared chiral fluorescent bisboronic acid sensors with 3,6-dithiophen-2-yl-9H-carbazole as the fluorophore. The thiophene moiety was used to extend the π-conjugation framework of the fluorophore in order to red-shift the fluorescence emission and, at the same time, to enhance the novel process where the fluorophore serves as the electron donor of the photoinduced electron transfer process (d-PET) of the boronic acid sensors; i.e., the background fluorescence of the sensor 1 at acidic pH is weaker compared to that at neutral or basic pH, in stark contrast to the typical a-PET boronic acid sensors (where the fluorophore serves as the electron acceptor of the photoinduced electron transfer process). The benefit of the d-PET boronic acid sensors is that the recognition of the hydroxylic acids can be achieved at acidic pH. We found that the thiophene moiety is an efficient π-conjugation linker and electron donor; as a result, the d-PET contrast ratio of the sensors upon variation of the pH is improved 10-fold when compared to the previously reported d-PET sensors without the thiophene moiety. Enantioselective recognition of tartaric acid was achieved at acid pH, and the enantioselectivity (total response K(D)I(F)(D)/K(L)I(F)(L)) is 3.3. The fluorescence enhancement (I(F)(Sample)/I(F)(Blank)) of sensor 1 upon binding with tartaric acid is 3.5-fold at pH 3.0. With the fluorescent bisboronic acid sensor 1, enantioselective recognition of mandelic acid was achieved for the first time. To the best of our knowledge, this is the first time that the mandelic acid has been enantioselectively recognized using a chiral fluorescent boronic acid sensor. Chiral monoboronic acid sensor 2 and bisboronic acid sensor 3 without the thiophene moiety failed to enantioselectively recognize mandelic acid. Our findings with the thiophene-incorporated boronic acid sensors will be important for the design of d-PET fluorescent sensors for the enantioselective recognition of α-hydroxylic acids such as mandelic acid, given that it is currently a challenge to recognize these analytes with boronic acid fluorescent molecular sensors.  相似文献   
955.
Quantum dots (QDs) have been widely used for fluorescent imaging in cells. In particular, surface functionalized QDs are of interest, since they possess the ability to recognize and detect the analytes in the surrounding nanoscale environment based on electron and hole transfer between the analytes and the QDs. Here we demonstrate that fluorescence enhancement/quenching in QDs can be switched by electrochemically modulating electron transfer between attached molecules and QDs. For this purpose, a number of redox-active coenzyme Q (CoQ) disulfide derivatives [CoQC(n)S](2) were synthesized with different alkyl chain lengths (n=1, 5, and 10). The system supremely sensitive to NADH (nicotinamide adenine dinucleotide) and superoxide radical (O(2)(.)(-)), and represents a biomimetic electron-transfer system, modeling part of the mitochondrial respiratory chain. The results of our in situ fluorescence spectroelectrochemical study demonstrate that the reduced state of [CoQC(n)S](2) significantly enhanced the fluorescence intensity of CdTe/ZnS QDs, while the oxidized state of the CoQ conjugates quench the fluorescence to varying degrees. Fluorescence imaging of cells loaded with the conjugate QD-[CoQC(n)S](2) displayed strikingly differences in the fluorescence depending on the redox state of the capping layer, thus introducing a handle for evaluating the status of the cellular redox potential status. Moreover, an MTT assay (MTT=3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) proved that the cytotoxicity of QDs was significantly reduced after immobilization by CoQ derivatives. Those unique features make CoQ derivatived QDs as a promising probe to image redox coenzyme function in vitro and in vivo.  相似文献   
956.
(S)-1,1'-Binaphth-2-ol (BINOL) in combination with ZnEt(2), Ti(O(i)Pr)(4), and biscyclohexylamine was found to catalyze the highly enantioselective (83-95% ee) addition of various 1,3-diynes to aldehydes of diverse structures. This method provides a convenient pathway to generate a number of optically active dienediynes as the acyclic precursors to polycyclic compounds. The chiral dienediynes undergo highly chemoselective Pauson-Khand (PK) cycloaddition in benzaldehyde by using [Rh(cod)Cl](2) as the catalyst in the presence of rac-BINAP. High diastereoselectivity (up to >20:1) has also been achieved with the chiral dienediyne substrates containing a bulky substituent adjacent to the chiral center. In the presence of the Grubbs II catalyst, ring-closing enyne metathesis of the PK cycloaddition products led to the formation of the desired 5,5,7- and 5,5,8-fused tricyclic compounds. Further highly diastereoselective Diels-Alder reaction of a 5,5,7-tricyclic compound with maleic anhydride produced a 5,5,7,6-polycyclic product. The asymmetric synthesis of polycyclic compounds from optically active dienediynes has established a novel and efficient synthetic route to the structural framework of many biologically significant molecules.  相似文献   
957.
2‐Bromomethyl‐9,10‐anthraquinone is covalently bound to carbon nanoparticle surfaces (Emperor 2000, Cabot Corp., with sulphonamide groups, ca. 9 to 18 nm diameter) with a coverage of ca. 250 anthraquinone molecules per particle (ca. 180 Å2 per anthraquinone). The resulting hydrophobic carbon particles are dispersed in ethanol and coated onto glassy carbon electrodes. Electrochemical experiments are reported demonstrating the effect of surface coverage, scan rate, and pH. A linear shift in reversible potential of ca. 59 mV per pH unit from pH 2 to 12 is observed consistent with the reversible 2‐electron 2‐proton reduction of anthraquinone. High density of anthraquinone in carbon nanoparticle aggregates causes buffer capacity effects. Binding of hydrophobic tetraphenylborate anions into carbon nanoparticle aggregate pores is demonstrated. Applications in buffer characterisation and pH‐sensing are discussed.  相似文献   
958.
Luminogens characteristic of aggregation-induced emission (AIEgens) have been extensively exploited for the development of imaging-guided photodynamic therapeutic (PDT) agents. However, intramolecular rotation of donor–acceptor (D–A) type AIEgens favors non-radiative decay of photonic energy which results in unsatisfactory fluorescence quantum and singlet oxygen yields. To address this issue, we developed several molecularly engineered AIEgens with partially “locked” molecular structures enhancing both fluorescence emission and the production of triplet excitons. A triphenylphosphine group was introduced to form a D–A conjugate, improving water solubility and the capacity for mitochondrial localization of the resulting probes. Experimental and theoretical analyses suggest that the much higher quantum and singlet oxygen yield of a structurally “significantly-locked” probe (LOCK-2) than its “partially locked” (LOCK-1) and “unlocked” equivalent (LOCK-0) is a result of suppressed AIE and twisted intramolecular charge transfer. LOCK-2 was also used for the mitochondrial-targeting, fluorescence image-guided PDT of liver cancer cells.

Luminogens characteristic of aggregation-induced emission (AIEgens) have been engineered for the development of imaging-guided photodynamic therapeutic (PDT) agents.  相似文献   
959.
Photobase generators are species that allow the photocatalysis of various reactions, such as thiol-Michael, thiol-isocyanate, and ring-opening polymerization reactions. However, existing compounds have complex syntheses and low quantum yields. To overcome these problems, photobase generators based on the photodecarboxylation reaction were developed. We synthesized and studied the photochemistry and photophysics of two xanthone photobase, their carboxylic acid precursors, and their photoproducts to understand the photobase generation mechanism. We determined accurate quantum yields of triplet states and photobase generation. The effect of the intermediate radical preceding the base release was demonstrated. We characterized the photophysics of the photobase by femtosecond spectroscopy and showed that the photodecarboxylation process occurred from the second excited triplet state with a rate constant of 2.2×109 s−1.  相似文献   
960.
Due to their high versatility borylated and silylated compounds are inevitable synthons for organic chemists. To escape the classical hydroboration/hydrosilylation paradigm, chemists turned their attention to more modern and green methods such as photoredox chemistry and electrosynthesis. This account focuses on novel methods for the generation of boryl and silyl radicals to forge C−B and C−Si bonds from our group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号