首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   765篇
  免费   4篇
  国内免费   2篇
化学   598篇
晶体学   14篇
力学   8篇
数学   28篇
物理学   123篇
  2022年   4篇
  2021年   8篇
  2020年   12篇
  2019年   11篇
  2018年   10篇
  2017年   4篇
  2016年   11篇
  2015年   14篇
  2014年   10篇
  2013年   27篇
  2012年   31篇
  2011年   21篇
  2010年   29篇
  2009年   25篇
  2008年   43篇
  2007年   45篇
  2006年   41篇
  2005年   31篇
  2004年   38篇
  2003年   32篇
  2002年   35篇
  2001年   14篇
  2000年   24篇
  1999年   15篇
  1998年   9篇
  1997年   9篇
  1996年   12篇
  1994年   5篇
  1993年   9篇
  1992年   13篇
  1991年   10篇
  1989年   7篇
  1988年   6篇
  1987年   5篇
  1986年   5篇
  1985年   12篇
  1984年   8篇
  1983年   4篇
  1982年   4篇
  1981年   14篇
  1980年   16篇
  1979年   18篇
  1978年   14篇
  1977年   7篇
  1975年   9篇
  1974年   7篇
  1973年   6篇
  1971年   4篇
  1969年   4篇
  1923年   3篇
排序方式: 共有771条查询结果,搜索用时 15 毫秒
101.
    
Chemical an spectroscopic evidence is presented to show that 2,3-dihydro-2,3,5-trimethyl-6-(1-methyl-2-oxobutyl)-4H-pyran-4-one (10) is the sex pheromone produced by the female drugstore beetle, Stegobium paniceum L.  相似文献   
102.
    
A novel preparation method for the core‐shell type biodegradable polyesters or biodegradable materials grafted with biodegradable polyesters was developed by alkaline surface treatment of biodegradable polyester films and subsequent enzymatic polymerization of aliphatic lactones, one example of which is shown in this study, i.e., the preparation of poly(L ‐lactide) (PLLA) film grafted with poly(ε‐caprolactone). It is revealed that only alkaline surface treatment or the combination of alkaline surface treatment and enzyme‐catalyzed grafting, the former and the latter, respectively accelerating and delaying the enzymatic degradation of PLLA, will give PLLA materials having a wide variety of biodegradability. Also, the specificity of the enzyme used for hydrolysis could be used to confirm the grafted chain species.

  相似文献   

103.
104.
    
The pyrolytic highly oriented graphite polymer film (PGS) was first employed to analyze low‐mass analytes in environmental analysis by surface‐assisted laser desorption/ionization mass spectrometry (SALDI‐MS). PGS is a synthetic uniform and highly oriented graphite polymer film with high thermal anisotropic conductivity. We have found that negative ion mode SALDI‐MS using oxidized PGS (PGS‐SALDI‐MS) can be used to detect [M–H]? ions from perfluorooctanoic acid (PFOA) and other perfluoroalkylcarboxylic acids when the PGS surface is modified with the cationic polymer polyethyleneimine (PEI). The signal intensity of PFOA when employing the PEI modification showed a ten‐fold increase over that obtained from desorption/ionization on porous silicon (DIOS). PFOA was quantified using PGS‐SALDI‐MS and the calibration curve showed a wide linear dynamic range of response (20–1000 ppb). The combination of atmospheric pressure ionization and PGS (AP‐PGS‐SALDI) showed greater signal intensity than vacuum PGS‐SALDI for deprotonated PFOA. Several other environmentally important chemicals, including perfluoroalkylsulfonic acid, pentachlorophenol, bisphenol A, 4‐hydroxy‐2‐chlorobiphenyl, and benzo[a]pyrene, were also successfully used to evaluate PGS‐SALDI‐MS. In addition, we found that nonafluoro‐1‐butanesulfonic acid was able to produce protonated peptides in positive ion PGS‐SALDI‐MS, but that perfluoropentanoic acid and trifluoroacetic acid were not. It is suggested that perfluoroalkylsulfonic acids are better protonating agents than perfluoroalkylcarboxylic acids in SALDI‐MS. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
105.
    
Enzymatic degradation and polymerization using an enzyme were analyzed with respect to the establishment of a sustainable chemical recycling system for poly(ε‐caprolactone) (PCL) which is a typical biodegradable synthetic plastic. As the typical example, the enzymatic degradation of PCL having an Mn of 110 000 using lipase CA in toluene containing water at 70°C for 6 h afforded a unimodal oligomer having an Mn of about 1 000 quantitatively consisting of linear and cyclic oligomers. This was again polymerized by lipase CA in toluene under restricted water concentration to produce PCL having an Mn of greater than 70 000.  相似文献   
106.
    
Anionic polymerizations of three 1,3‐butadiene derivatives containing different N,N‐dialkyl amide functions, N,N‐diisopropylamide (DiPA), piperidineamide (PiA), and cis‐2,6‐dimethylpiperidineamide (DMPA) were performed under various conditions, and their polymerization behavior was compared with that of N,N‐diethylamide analogue (DEA), which was previously reported. When polymerization of DiPA was performed at ?78 °C with potassium counter ion, only trace amounts of oligomers were formed, whereas polymers with a narrow molecular weight distribution were obtained in moderate yield when DiPA was polymerized at 0 °C in the presence of LiCl. Decrease in molecular weight and broadening of molecular weight distribution were observed when polymerization was performed at a higher temperature of 20 °C, presumably because of the effect of ceiling temperature. In the case of DMPA, no polymer was formed at 0 °C and polymers with relatively broad molecular weight distributions (Mw/Mn = 1.2) were obtained at 20 °C. The polymerization rate of PiA was much faster than that of the other monomers, and poly(PiA) was obtained in high yield even at ?78 °C in 24 h. The microstructure of the resulting polymers were exclusively 1,4‐ for poly(DMPA), whereas 20–30% of the 1,2‐structure was contained in poly(DiPA) and poly(PiA). © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 3714–3721, 2010  相似文献   
107.
108.
109.
    
The enzymatic transformation into an oligomer was carried out with the objective of developing the chemical recycling of bacterial polyesters. Poly(R-3-hydroxyalkanoate)s (PHAs), such as poly[(R-3-hydroxybutyrate)-co-12%(R-3-hydroxyhexanoate)] and poly[(R-3-hydroxybutyrate)-co-12%(R-3-hydroxyvalerate)], were degraded by granulated Candida antarctica lipase B immobilized on hydrophilic silica (lipase GCA) in a diluted organic solvent at 70 degrees C. The degradation products were cyclic oligomers having a molecular weight of a few hundreds. The obtained cyclic oligomer was readily repolymerized by the same lipase (lipase GCA) to produce the corresponding polyester in a concentrated solution. The cyclic oligomer was copolymerized with epsilon-caprolactone using lipase to produce the corresponding terpolymers having an Mw of 21,000. This is the first example of the enzymatic chemical recycling of bacterial PHAs using lipase. Poly(R-3-hydroxybutyrate) [P(3HB)] was also degraded into the linear-type R-3HB monomer to trimer by P(3HB)-depolymerase (PHBDP) in phosphate buffer at 37 degrees C. The degradation using PHBDP required a longer reaction time compared with the lipase-catalyzed degradation in organic solvent. The monomer composition of the oligomer depended on the origin of the PHBDP. The R-3HB monomer was predominately produced by PHBDP from Pseudomonas stutzeri, while the R-3HB dimer was produced by PHBDP from Alcaligenes faecalis T1. Repolymerization of these oligomers by lipase in concentrated organic solvent produced a relatively low-molecular-weight P(3HB) (e.g., Mw=2,000). Degradation of P(3HB) by lipase in organic solvent into repolymerizable cyclic oligomer and degradation of P(3HB) by PHBDP in buffer into hydroxy acid type R-3HB dimer.  相似文献   
110.
    
Excited states of fluorescent proteins were studied using symmetry-adapted cluster-configuration interaction (SAC-CI) method. Protein-environmental effect on the excitation and fluorescence energies was investigated. In green fluorescent protein (GFP), the overall protein-environmental effect on the first excitation energy is not significant. However, glutamine (Glu) 94 and arginine (Arg96) have the red-shift contribution as reported in a previous study (Laino et al., Chem Phys 2004, 298, 17). The excited states of GFP active site (GFP-W22-Ser205-Glu222-Ser65) were also calculated. Such large-scale SAC-CI calculations were performed with an improved code containing a new algorithm for the perturbation selection. The SAC-CI results indicate that a charge-transfer state locates at 4.19 eV, which could be related to the channel of the photochemistry as indicated in a previous experimental study. We also studied the excitation and fluorescence energies of blue fluorescent protein, cyan fluorescent protein, and Y66F. The SAC-CI results are very close to the experimental ones. The protonation state of blue fluorescent protein was determined. Conformation of cyan fluorescent protein indicated by the present calculation agrees to the experimentally observed structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号