Chemical an spectroscopic evidence is presented to show that 2,3-dihydro-2,3,5-trimethyl-6-(1-methyl-2-oxobutyl)-4H-pyran-4-one (10) is the sex pheromone produced by the female drugstore beetle, Stegobium paniceum L. 相似文献
A novel preparation method for the core‐shell type biodegradable polyesters or biodegradable materials grafted with biodegradable polyesters was developed by alkaline surface treatment of biodegradable polyester films and subsequent enzymatic polymerization of aliphatic lactones, one example of which is shown in this study, i.e., the preparation of poly(L ‐lactide) (PLLA) film grafted with poly(ε‐caprolactone). It is revealed that only alkaline surface treatment or the combination of alkaline surface treatment and enzyme‐catalyzed grafting, the former and the latter, respectively accelerating and delaying the enzymatic degradation of PLLA, will give PLLA materials having a wide variety of biodegradability. Also, the specificity of the enzyme used for hydrolysis could be used to confirm the grafted chain species.
Enzymatic degradation and polymerization using an enzyme were analyzed with respect to the establishment of a sustainable chemical recycling system for poly(ε‐caprolactone) (PCL) which is a typical biodegradable synthetic plastic. As the typical example, the enzymatic degradation of PCL having an Mn of 110 000 using lipase CA in toluene containing water at 70°C for 6 h afforded a unimodal oligomer having an Mn of about 1 000 quantitatively consisting of linear and cyclic oligomers. This was again polymerized by lipase CA in toluene under restricted water concentration to produce PCL having an Mn of greater than 70 000. 相似文献
The enzymatic transformation into an oligomer was carried out with the objective of developing the chemical recycling of bacterial polyesters. Poly(R-3-hydroxyalkanoate)s (PHAs), such as poly[(R-3-hydroxybutyrate)-co-12%(R-3-hydroxyhexanoate)] and poly[(R-3-hydroxybutyrate)-co-12%(R-3-hydroxyvalerate)], were degraded by granulated Candida antarctica lipase B immobilized on hydrophilic silica (lipase GCA) in a diluted organic solvent at 70 degrees C. The degradation products were cyclic oligomers having a molecular weight of a few hundreds. The obtained cyclic oligomer was readily repolymerized by the same lipase (lipase GCA) to produce the corresponding polyester in a concentrated solution. The cyclic oligomer was copolymerized with epsilon-caprolactone using lipase to produce the corresponding terpolymers having an Mw of 21,000. This is the first example of the enzymatic chemical recycling of bacterial PHAs using lipase. Poly(R-3-hydroxybutyrate) [P(3HB)] was also degraded into the linear-type R-3HB monomer to trimer by P(3HB)-depolymerase (PHBDP) in phosphate buffer at 37 degrees C. The degradation using PHBDP required a longer reaction time compared with the lipase-catalyzed degradation in organic solvent. The monomer composition of the oligomer depended on the origin of the PHBDP. The R-3HB monomer was predominately produced by PHBDP from Pseudomonas stutzeri, while the R-3HB dimer was produced by PHBDP from Alcaligenes faecalis T1. Repolymerization of these oligomers by lipase in concentrated organic solvent produced a relatively low-molecular-weight P(3HB) (e.g., Mw=2,000). Degradation of P(3HB) by lipase in organic solvent into repolymerizable cyclic oligomer and degradation of P(3HB) by PHBDP in buffer into hydroxy acid type R-3HB dimer. 相似文献
Excited states of fluorescent proteins were studied using symmetry-adapted cluster-configuration interaction (SAC-CI) method. Protein-environmental effect on the excitation and fluorescence energies was investigated. In green fluorescent protein (GFP), the overall protein-environmental effect on the first excitation energy is not significant. However, glutamine (Glu) 94 and arginine (Arg96) have the red-shift contribution as reported in a previous study (Laino et al., Chem Phys 2004, 298, 17). The excited states of GFP active site (GFP-W22-Ser205-Glu222-Ser65) were also calculated. Such large-scale SAC-CI calculations were performed with an improved code containing a new algorithm for the perturbation selection. The SAC-CI results indicate that a charge-transfer state locates at 4.19 eV, which could be related to the channel of the photochemistry as indicated in a previous experimental study. We also studied the excitation and fluorescence energies of blue fluorescent protein, cyan fluorescent protein, and Y66F. The SAC-CI results are very close to the experimental ones. The protonation state of blue fluorescent protein was determined. Conformation of cyan fluorescent protein indicated by the present calculation agrees to the experimentally observed structure. 相似文献