首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   0篇
  国内免费   1篇
数学   49篇
  2021年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   3篇
  2011年   5篇
  2010年   2篇
  2009年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2002年   1篇
  2000年   1篇
  1997年   4篇
  1996年   1篇
  1994年   3篇
  1992年   1篇
  1991年   1篇
  1990年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1978年   1篇
  1977年   2篇
排序方式: 共有49条查询结果,搜索用时 952 毫秒
11.
Monte Carlo methods have extensively been used and studied in the area of stochastic programming. Their convergence properties typically consider global minimizers or first-order critical points of the sample average approximation (SAA) problems and minimizers of the true problem, and show that the former converge to the latter for increasing sample size. However, the assumption of global minimization essentially restricts the scope of these results to convex problems. We review and extend these results in two directions: we allow for local SAA minimizers of possibly nonconvex problems and prove, under suitable conditions, almost sure convergence of local second-order solutions of the SAA problem to second-order critical points of the true problem. We also apply this new theory to the estimation of mixed logit models for discrete choice analysis. New useful convergence properties are derived in this context, both for the constrained and unconstrained cases, and associated estimates of the simulation bias and variance are proposed. Research Fellow of the Belgian National Fund for Scientific Research  相似文献   
12.
Local convergence analysis for partitioned quasi-Newton updates   总被引:8,自引:0,他引:8  
Summary This paper considers local convergence properties of inexact partitioned quasi-Newton algorithms for the solution of certain non-linear equations and, in particular, the optimization of partially separable objective functions. Using the bounded deterioration principle, one obtains local and linear convergence, which impliesQ-superlinear convergence under the usual conditions on the quasi-Newton updates. For the optimization case, these conditions are shown to be satisfied by any sequence of updates within the convex Broyden class, even if some Hessians are singular at the minimizer. Finally, local andQ-superlinear convergence is established for an inexact partitioned variable metric method under mild assumptions on the initial Hessian approximations.Work supported by a research grant of the Deutsche Forschungsgemeinschaft, Bonn and carried out at the Department of Applied Mathematics and Theoretical Physics Cambridge (United Kingdom)  相似文献   
13.
High-order optimality conditions for convexly constrained nonlinear optimization problems are analysed. A corresponding (expensive) measure of criticality for arbitrary order is proposed and extended to define high-order \(\epsilon \)-approximate critical points. This new measure is then used within a conceptual trust-region algorithm to show that if derivatives of the objective function up to order \(q \ge 1\) can be evaluated and are Lipschitz continuous, then this algorithm applied to the convexly constrained problem needs at most \(O(\epsilon ^{-(q+1)})\) evaluations of f and its derivatives to compute an \(\epsilon \)-approximate qth-order critical point. This provides the first evaluation complexity result for critical points of arbitrary order in nonlinear optimization. An example is discussed, showing that the obtained evaluation complexity bounds are essentially sharp.  相似文献   
14.
Quasi-Newton algorithms for unconstrained nonlinear minimization generate a sequence of matrices that can be considered as approximations of the objective function second derivatives. This paper gives conditions under which these approximations can be proved to converge globally to the true Hessian matrix, in the case where the Symmetric Rank One update formula is used. The rate of convergence is also examined and proven to be improving with the rate of convergence of the underlying iterates. The theory is confirmed by some numerical experiments that also show the convergence of the Hessian approximations to be substantially slower for other known quasi-Newton formulae.The work of this author was supported by the National Sciences and Engineering Research Council of Canada, and by the Information Technology Research Centre, which is funded by the Province of Ontario.  相似文献   
15.
We introduce a new trust-region method for unconstrained optimization where the radius update is computed using the model information at the current iterate rather than at the preceding one. The update is then performed according to how well the current model retrospectively predicts the value of the objective function at last iterate. Global convergence to first- and second-order critical points is proved under classical assumptions and preliminary numerical experiments on CUTEr problems indicate that the new method is very competitive.  相似文献   
16.
A convergent minimization algorithm made up of repetitive line searches is considered in n . It is shown that the uniform nonsingularity of the matrices consisting ofn successive normalized search directions guarantees a speed of convergence which is at leastn-step Q-linear. Consequences are given for multistep methods, including Powell's 1964 procedure for function minimization without calculating derivatives as well as Zangwill's modifications of this procedure.The authors wish to thank the Namur Department of Mathematics, especially its optimization group, for many discussions and encouragement. They also thank the reviewers for many helpful suggestions.  相似文献   
17.
The concept of a partially separable functionf developed in [4] is generalized to include all functionsf that can be expressed as a finite sum of element functionsf i whose Hessians have nontrivial nullspacesN i , Such functions can be efficiently minimized by the partitioned variable metric methods described in [5], provided that each element functionf i is convex. If this condition is not satisfied, we attempt toconvexify the given decomposition by shifting quadratic terms among the originalf i such that the resulting modified element functions are at least locally convex. To avoid tests on the numerical value of the Hessian, we study the totally convex case where all locally convexf with the separability structureN i 1 have a convex decomposition. It is shown that total convexity only depends on the associated linear conditions on the Hessian matrix. In the sparse case, when eachN i is spanned by Cartesian basis vectors, it is shown that a sparsity pattern corresponds to a totally convex structure if and only if it allows a (permuted) LDLT factorization without fill-in.  相似文献   
18.
This paper is concerned with two questions relating to quasi-Newton updates for unconstrained optimization that exploit any sparsity present in the second derivative matrix of the objective function. First, a family of such updates is derived, that reduces to any a priori known dense update formula when no sparsity is imposed. This family uses the Frobenius projection of the desired update on the subspace of matrices that satisfy all the needed conditions. In the second part, we prove that, under mild assumptions, a positive definite sparse quasi-Newton update always exists. The proof of this result includes the explicit determination of such an update.  相似文献   
19.
In a recent paper (Cartis et al. in Math Prog A 144(2):93–106, 2014), the evaluation complexity of an algorithm to find an approximate first-order critical point for the general smooth constrained optimization problem was examined. Unfortunately, the proof of Lemma 3.5 in that paper uses a result from an earlier paper in an incorrect way, and indeed the result of the lemma is false. The purpose of this corrigendum is to provide a modification of the previous analysis that allows us to restore the complexity bound for a different, scaled measure of first-order criticality.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号