首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   135篇
  免费   1篇
化学   124篇
力学   2篇
数学   3篇
物理学   7篇
  2020年   1篇
  2019年   1篇
  2016年   3篇
  2015年   1篇
  2014年   1篇
  2013年   6篇
  2012年   2篇
  2011年   6篇
  2010年   3篇
  2008年   3篇
  2007年   8篇
  2006年   5篇
  2005年   7篇
  2004年   7篇
  2003年   3篇
  2002年   4篇
  2001年   6篇
  2000年   3篇
  1999年   1篇
  1998年   2篇
  1996年   27篇
  1995年   4篇
  1994年   2篇
  1993年   1篇
  1992年   4篇
  1991年   2篇
  1990年   4篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   2篇
  1978年   1篇
  1977年   2篇
  1976年   1篇
排序方式: 共有136条查询结果,搜索用时 31 毫秒
21.
We propose a new way to determine weak repulsive forces operative between colloidal particles by measuring the rate of slow coagulation. The rate of slow coagulation is directly related to the competition of the repulsion with thermal motion. Since the thermal forces are weak, measurements of the coagulation rate can lead to precise information on repulsive potentials having a magnitude of just a few kT. We demonstrate this novel way by studying colloidal spherical polyelectrolyte brush (SPB) particles in aqueous solution containing trivalent La3+ counterions. The particles consist of a monodisperse polystyrene core of 121 nm radius from which linear sodium poly(styrenesulfonate) (PSS) chains are densely grafted (contour length 48 nm). We determine the rate of coagulation by time-resolved simultaneous static and dynamic light scattering in the presence of LaCl3 (0.2 to 150 mM). Direct measurements of the repulsive force between macroscopic brush layers demonstrate that the potential is decaying exponentially with distance. This is in good agreement with a simple theoretical treatment that furthermore leads to the effective surface potential Psi0. The good agreement of data obtained by the novel microscopic method with direct macroscopic measurements underscores the general validity of our approach.  相似文献   
22.
23.
Four new derivatives of 5-vinylsalicylic acid were prepared and their homopolymerization and copolymerization with acrylic acid and methacrylic acid investigated. Methyl 5-vinylsalicylate was prepared in a six-step synthesis from methyl salicylate in an overall yield of 35%. Acetylation in the last step yielded methyl 5-vinylacetylsalicylate. Hydrolysis of methyl 5-vinylsalicylate gave 5-vinylsalicylic acid which was acetylated to 5-vinylacetylsalicylic acid (5-vinyl aspirin). The 5-vinyl-substituted salicylic acid derivatives could be readily homopolymerized and copolymerized with acrylic acid and methacrylic acid to give various compositions of copolymers. It is worth noting that even the monomers with free phenol groups could be readily polymerized with azobisisobutyronitrile as radical initiator to high molecular weight polymers without interference of the phenolic OH group.  相似文献   
24.
Materials employed in biomedical technology are increasingly being designed to have specific, desirable biological interactions with their surroundings, rather than the older common practice of trying to adapt traditional materials to biomedical applications. Moreover, materials scientists are also increasingly deriving new lessons from naturally occurring materials (from mollusk shells to soft animal tissue) about useful composition–structure property relationships that might be mimicked with synthetic materials. Together, these two areas of effort constitute what we may call bioengineered materials. It is possible to set down a reasonably thorough set of characteristics that bioengineered materials have in common. Among these characteristics we discuss the following: self-assembly, bioengineered materials often rely on information content built into structural molecules to determine the order and organization of the material; hierarchical structure, in most bioengineered materials several different length scales of structure are essential and are formed spontaneously and simultaneously via self-assembly; precision synthesis, fundamental to biological material structures is the idea of macromolecules constructed in a precise manner; templating, ordered structures in bioengineered materials are often propagated from one element or set of instructions, to another; specific and non-specific interactions, the forces involved in holding biomaterials structures together. In the future, a carefully selected combination of this set of characteristics will enable us to bioengineer surfaces that are capable to direct and control a desired biological response. Eventually, such bioengineered surfaces will become important tools to comprehend and analyze how materials interact in nature.  相似文献   
25.
Aqueous micellar solutions of ionic/neutral block copolymers have been studied by light scattering, small angle neutron scattering and small angle X-ray scattering. We made use of a polymer comprised of a short hydrophobic block (polyethylene-propylene) PEP and of a long polyelectrolytic block (polystyrene-sulfonate) PSSNa which has been shown previously to micellize in water. The apparent polydispersity of these micelles is studied in detail, showing the existence of a few large aggregates coexisting with the population of micelles. Solutions of micelles are found to order above some threshold in polymer concentration. The order is liquid-like, as demonstrated by the evolution with concentration of the peak observed in the structure factor (), and the degree of order is found to be identical over a large range of concentrations (up to 20 wt%). Consistent values of the aggregation number of the micelles are found by independent methods. The effect of salt addition on the order is found to be weak. Received: 19 June 1997 / Received in final form: 4 September 1997 / Accepted: 9 October 1997  相似文献   
26.
The coiled-coil protein motif occurs in over 200 proteins and has generated interest for a range of applications requiring surface immobilization of the constituent peptides. This paper describes an investigation of the environment-responsive behavior of a monolayer of surface-immobilized artificial proteins, which are known to assemble to form coiled-coil structures in bulk solution. An extended version of the quartz crystal microbalance (QCM-D) and surface plasmon resonance (SPR) are independently employed to characterize the adsorption of the proteins to a gold surface. The data suggest that the molecules arrange in a closely packed layer orientated perpendicular to the surface. QCM-D measurements are also employed to measure pH-induced changes in the resonant frequency (f) and the energy dissipation factor (D) of a gold-coated quartz crystal functionalized with the formed monolayer. Exposure of the protein monolayer to a pH 4.5 solution results in a shift of 43 Hz in f and a shift of -0.7 x 10(-6) in D as compared to pH 7.4. In contrast, increasing the pH to 11.2, results in f and D shifts of -17 Hz and 0.6 x 10(-6), respectively. The magnitude of the observed shifts suggests that the proteins form a rigid layer at low pH that can be hydrated to a fluid layer as the pH is increased. These observations correlate with spectroscopic changes that indicate a reduction in the helical content of the protein in bulk solutions of high pH.  相似文献   
27.
28.
29.
This study investigates the structures of layers of amphiphilic diblock copolymers of poly(t-butyl styrene)-poly(styrene sulfonate) (PtBS-PSS) adsorbed on both the bare mica surface (hydrophilic) and an octadecyltriethoxysilane (OTE)-modified mica surface (hydrophobic). When the surface is rendered hydrophobic, the nonsoluble block exhibits stronger interaction with the surface and higher adsorbed masses are achieved. Interaction forces between two such adsorbed layers on both substrates were measured using the surface forces apparatus. The effect of salt concentration (Cs) and molecular weight (N) on the height of the self-assembled layers (L0) was examined in each case. The resulting scaling relationship is in good agreement with predictions of the brush model, L0 proportional to N(1.0) in the low-salt limit and L0N(-1) proportional to (Cs/sigma)(-0.32) in the salted regime, when adsorption takes place onto the hydrophobized mica surface. For adsorption on the bare mica surface, L0N(-0.7) proportional, variant Cs(-0.17) agrees with the scaling prediction of the sparse tethering model. The results suggest that, on the hydrophilic bare mica surface, the adsorbed amount is not high enough to form a brush structure and only very little intermolecular stretching of the tethered chains occurs; in contrast, the presence of the hydrophobic OTE layer increases the tethering density such that the polyelectrolyte chains adopt a brush conformation.  相似文献   
30.
A general lattice Monte Carlo model is used for simulating the formation of supported lipid bilayers (SLBs) from vesicle solutions. The model, based on a previously published paper, consists of adsorption, decomposition, and lateral diffusion steps, and is derived from fundamental physical interactions and mass transport principles. The Monte Carlo simulation results are fit to experimental data at different vesicle bulk concentrations. A sensitivity analysis reveals that the process strongly depends on the bulk concentration C(0), adsorption rate constant K, and all vesicle radii parameters. A measure of "quality of coverage" is proposed. By this measure, the quality of the formed bilayers is found to increase with vesicle bulk concentration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号