首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   66篇
  免费   2篇
化学   24篇
力学   6篇
数学   3篇
物理学   35篇
  2023年   2篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   4篇
  2001年   2篇
  2000年   4篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1986年   2篇
  1982年   2篇
  1981年   1篇
  1979年   1篇
排序方式: 共有68条查询结果,搜索用时 31 毫秒
21.
The kinetics of the reactions of chlorinated methyl radicals (CH2Cl, CHCl2, and CCl3) with NO2 have been studied in direct measurements at temperatures between 220 and 360 K using a tubular flow reactor coupled to a photoionization mass spectrometer. The radicals have been homogeneously generated at 193 or 248 nm by pulsed laser photolysis of appropriate precursors. Decays of radical concentrations have been monitored in time-resolved measurements to obtain the reaction rate coefficients under pseudo-first-order conditions with the amount of NO2 being in large excess over radical concentrations. The bimolecular rate coefficients of all three reactions are independent of the bath gas (He or N2) and pressure within the experimental range (1-6 Torr) and are found to depend on temperature as follows: k(CH2Cl + NO2) = (2.16 +/- 0.08) x 10(-11) (T/300 K)(-1.12+/-0.24) cm3 molecule(-1) s(-1) (220-363 K), k(CHCl2 + NO2) = (8.90 +/- 0.16) x 10(-12) (T/300 K)(-1.48+/-0.13) cm3 molecule(-1) s(-1) (220-363 K), and k(CCl3 + NO2) = (3.35 +/- 0.10) x 10(-12) (T/300 K)(-2.2+/-0.4) cm3 molecule(-1) s(-1) (298-363 K), with the uncertainties given as one-standard deviations. Estimated overall uncertainties in the measured bimolecular reaction rate coefficients are about +/-25%. In the reactions CH2Cl + NO2, CHCl2 + NO2, and CCl3 + NO2, the products observed are formaldehyde, CHClO, and phosgene (CCl2O), respectively. In addition, a weak signal for the HCl formation has been detected for the CHCl2 + NO2 reaction.  相似文献   
22.
The kinetics of the CCl2 + Br2 and CCl2 + NO2 reactions have been studied at temperatures between 266 and 365 K using laser photolysis/photoionization mass spectrometry. Dichloromethylene biradicals were produced by the pulsed laser photolysis of CCl4. The bimolecular rate coefficients of the CCl2 + Br2 reaction can be described by the Arrhenius expression k1 = (7.05 ± 1.75) × 10−12 exp[(3.52 ± 0.63) kJ mol−1/RT] cm3 molecule−1 s−1. CCl2Br was observed as a primary product of this reaction. Interestingly, the bimolecular rate coefficients of the CCl2 + NO2 reaction were observed to depend weakly on the bath gas density and to possess a negative temperature dependence.  相似文献   
23.
24.
A Kozeny–Carman-based model of permeability for fibrous networks is proposed: the original model is extended by incorporating information about the local structure of the void space. Furthermore, it is demonstrated how in practice this added structural information can be retrieved from a three-dimensional digital image of a fibrous material. The proposed model is then validated for both foam- and water-deposited laboratory sheets of bleached kraft pulp (Scots pine) and chemi-thermo-mechanical pulp (CTMP, Norway spruce). The validation is carried out by comparing the model predictions against computationally determined permeability values. The related fluid-flow simulations are executed using the lattice-Boltzmann method together with high-resolution X-ray microtomography images. For both pulp materials, the sample sets had nearly equal porosities, but deviated substantially in their permeabilities. The proposed model was shown to improve prediction of permeability for the fibrous materials considered: the deviation between the predicted and computationally determined values was no more than 8%.  相似文献   
25.
In many realistic fluid-dynamical simulations the specification of the boundary conditions, the error sources, and the number of time steps to reach a steady state are important practical considerations. In this paper we study these issues in the case of the lattice-BGK model. The objective is to present a comprehensive overview of some pitfalls and shortcomings of the lattice-BGK method and to introduce some new ideas useful in practical simulations. We begin with an evaluation of the widely used bounce-back boundary condition in staircase geometries by simulating flow in an inclined tube. It is shown that the bounce-back scheme is first-order accurate in space when the location of the non-slip wall is assumed to be at the boundary nodes. Moreover, for a specific inclination angle of 45 degrees, the scheme is found to be second-order accurate when the location of the non-slip velocity is fitted halfway between the last fluid nodes and the first solid nodes. The error as a function of the relaxation parameter is in that case qualitatively similar to that of flat walls. Next, a comparison of simulations of fluid flow by means of pressure boundaries and by means of body force is presented. A good agreement between these two boundary conditions has been found in the creeping-flow regime. For higher Reynolds numbers differences have been found that are probably caused by problems associated with the pressure boundaries. Furthermore, two widely used 3D models, namelyD3Q15andD3Q19, are analysed. It is shown that theD3Q15model may induce artificial checkerboard invariants due to the connectivity of the lattice. Finally, a new iterative method, which significantly reduces the saturation time, is presented and validated on different benchmark problems.  相似文献   
26.
27.
The kinetics of the reactions of CH2Br and CH2I radicals with O2 have been studied in direct measurements using a tubular flow reactor coupled to a photoionization mass spectrometer. The radicals have been homogeneously generated by pulsed laser photolysis of appropriate precursors at 193 or 248 nm. Decays of radical concentrations have been monitored in time-resolved measurements to obtain the reaction rate coefficients under pseudo-first-order conditions with the amount of O2 being in large excess over radical concentrations. No buffer gas density dependence was observed for the CH2I + O2 reaction in the range 0.2-15 x 10(17) cm(-3) of He at 298 K. In this same density range the CH2Br + O2 reaction was obtained to be in the third-body and fall-off area. Measured bimolecular rate coefficient of the CH2I + O2 reaction is found to depend on temperature as k(CH2I + O2)=(1.39 +/- 0.01)x 10(-12)(T/300 K)(-1.55 +/- 0.06) cm3 s(-1)(220-450 K). Obtained primary products of this reaction are I atom and IO radical and the yield of I-atom is significant. The rate coefficient and temperature dependence of the CH2Br + O2 reaction in the third-body region is k(CH2Br + O2+ He)=(1.2 +/- 0.2)x 10(-30)(T/300 K)(-4.8 +/- 0.3) cm6 s(-1)(241-363 K), which was obtained by fitting the complete data set simultaneously to a Troe expression with the F(cent) value of 0.4. Estimated overall uncertainties in the measured reaction rate coefficients are about +/-25%.  相似文献   
28.
Appearance of self-similar space-filling ball bearings has been suggested to provide the explanation for seismic gaps, shear weakness, and lack of detectable frictional heat formation in mature tectonic faults (shear zones). As the material in a shear zone fractures and grinds, it could be thought to eventually form a conformation that allows fragments to largely roll against each other without much sliding. This type of space-filling "ball bearing" can be constructed artificially, but so far how such delicate structures may appear spontaneously has remained unexplained. It is demonstrated here that first-principles simulations of granular packing with fragmenting grains indeed display spontaneous formation of shear bands with fragment conformations very similar to those of densely packed ball bearings.  相似文献   
29.
An effective boson Hamiltonian applicable to atomic beam splitters, coupled Bose-Einstein condensates, and optical lattices can be made exactly solvable by including all n-body interactions. The model can include an arbitrary number of boson components. In the strong interaction limit the model becomes a quantum phase model, which also describes a tight-binding lattice particle. Through exact results for dynamic correlation functions, it is shown how the previous weak interaction dynamics of these systems are extended to strong interactions, now becoming relevant in the experiments. The effect of the number of boson components is also analyzed.  相似文献   
30.
We evaluate finite-temperature equilibrium correlators for thermal time ordered Bose fields to good approximations by new methods of functional integration in d=1,2,3 dimensions and with the trap potentials V(r)0. As in the translationally invariant cases, asymptotic behaviors fall as to longer-range condensate values for and only for d=3 in agreement with experimental observations; but there are generally significant corrections also depending on due to the presence of the traps. For d=1, we regain the exact translationally invariant results as the trap frequencies 0. In analyzing the attractive cases, we investigate the time-dependent c-number Gross–Pitaevskii (GP) equation with the trap potential for a generalized nonlinearity –2c||2n and c<0. For n=1, the stationary form of the GP equation appears in the steepest-descent approximation of the functional integrals. We show that collapse in the sense of Zakharov can occur for c=0 and nd2 and a functional E NLS[]0 even when V(r)0. The singularities typically arise as -functions centered on the trap origin r=0.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号