首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1768篇
  免费   79篇
  国内免费   4篇
化学   1335篇
晶体学   20篇
力学   20篇
数学   236篇
物理学   240篇
  2023年   14篇
  2022年   8篇
  2021年   20篇
  2020年   43篇
  2019年   31篇
  2018年   13篇
  2017年   15篇
  2016年   74篇
  2015年   56篇
  2014年   65篇
  2013年   87篇
  2012年   123篇
  2011年   125篇
  2010年   71篇
  2009年   59篇
  2008年   114篇
  2007年   79篇
  2006年   97篇
  2005年   77篇
  2004年   93篇
  2003年   76篇
  2002年   61篇
  2001年   49篇
  2000年   28篇
  1999年   22篇
  1998年   19篇
  1997年   19篇
  1996年   31篇
  1995年   20篇
  1994年   25篇
  1993年   8篇
  1992年   13篇
  1991年   10篇
  1990年   10篇
  1989年   6篇
  1987年   6篇
  1986年   6篇
  1985年   11篇
  1983年   11篇
  1982年   13篇
  1981年   12篇
  1980年   13篇
  1979年   11篇
  1978年   11篇
  1977年   11篇
  1976年   9篇
  1975年   5篇
  1974年   6篇
  1973年   7篇
  1972年   6篇
排序方式: 共有1851条查询结果,搜索用时 15 毫秒
51.
Summary.  Hydrido substituted stannasilanes of the type or (Z = H, Me, Ph; R, R′ = alkyl, Ph) are accessible by reaction of either alkali metal stannides (MSn(Z)R 2; M = Li, Na) with halogen substituted silanes (; X = F, Cl) or chlorostannanes (R 2SnCl2, Ph3SnCl) and fluorosilanes in the presence of magnesium. Stannasilanes with halogen substituents at the silicon as well as the tin atom are formed by treatment of the hydrido substituted stannasilanes with CHCl3 or CCl4. The hydrido substituted stannasilanes decompose in contact with air to distannanes and siloxanes or to the linear ( t Bu2Sn(–O– t Bu2Si–OH)2) and cyclic ((– t Bu2Sn–O– i Pr2Si–O–)2) stannasiloxanes. Received November 29, 2001. Accepted (revised) January 16, 2002  相似文献   
52.
53.
The trinuclear Cu(II) complex [(talen)Cu(II)(3)] (1) using the new triplesalen ligand H(6)talen has been synthesized and structurally characterized. The three Cu(II) ions are bridged in a m-phenylene linkage by the phloroglucinol backbone of the ligand. This m-phenylene bridging mode results in ferromagnetic couplings with an S(t) = (3)/(2) spin ground state, which has been analyzed by means of EPR spectroscopy and DFT calculations. The EPR spectrum exhibits an unprecedented pattern of 10 hyperfine lines due to the coupling of three Cu(II) ions (I = (3)/(2)). Resonances around g = 4 in both perpendicular and parallel mode EPR spectra demonstrate a zero-field splitting of D approximately 74 x 10(-4) cm(-1) arising from anisotropic/antisymmetric exchange interactions. The DFT calculations show an alteration in the sign of the spin densities of the central benzene ring corroborating the spin-polarization mechanism as origin for the ferromagnetic coupling.  相似文献   
54.
Reaction of a N‐heterocyclic silylene (NHSi) with PhBX2 (X=Cl, Br) readily afforded six‐membered silaborinines through an insertion/ring expansion sequence. Increasing the sterics of the borane from phenyl to duryl enabled the selective generation and isolation of the highly colored silylborane intermediates. Theoretical studies on the mechanism and energetics of the silaborinine formation were fully consistent with the experimental observations.  相似文献   
55.
56.
57.
In this contribution, we present two new united‐atom force fields (UA‐FFs) for 1‐alkyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide [CnMIM][NTf2] (n=1, 2, 4, 6, 8) ionic liquids (ILs). One is parametrized manually, and the other is developed with the gradient‐based optimization workflow (GROW). By doing so, we wanted to perform a hard test to determine how researchers could benefit from semiautomated optimization procedures. As with our already published all‐atom force field (AA‐FF) for [CnMIM][NTf2] (T. Köddermann, D. Paschek, R. Ludwig, ChemPhysChem­ 2007, 8, 2464 ), the new force fields were derived to fit experimental densities, self‐diffusion coefficients, and NMR rotational correlation times for the IL cation and for water molecules dissolved in [C2MIM][NTf2]. In the manual force field, the alkyl chains of the cation and the CF3 groups of the anion were treated as united atoms. In the GROW force field, only the alkyl chains of the cation were united. All other parts of the structures of the ions remained unchanged to prevent any loss of physical information. Structural, dynamic, and thermodynamic properties such as viscosity, cation rotational correlation times, and heats of vaporization calculated with the new force fields were compared with values simulated with the previous AA‐FF and the experimental data. All simulated properties were in excellent agreement with the experimental values. Altogether, the UA‐FFs are slightly superior for speed‐up reasons. The UA‐FF speeds up the simulation by about 100 % and reduces the demanded disk space by about 78 %. More importantly, real time and efforts to generate force fields could be significantly reduced by utilizing GROW. The real time for the GROW parametrization in this work was 2 months. Manual parametrization, in contrast, may take up to 12 months, and this is, therefore, a significant increase in speed, though it is difficult to estimate the duration of manual parametrization.  相似文献   
58.
The use of iminophosphoryl-tethered ruthenium carbene complexes to activate secondary phosphine P−H bonds is reported. Complexes of type [(p-cymene)-RuC(SO2Ph)(PPh2NR)] (with R = SiMe3 or 4-C6H4−NO2) were found to exhibit different reactivities depending on the electronics of the applied phosphine and the substituent at the iminophosphoryl moiety. Hence, the electron-rich silyl-substituted complex undergoes cyclometallation or shift of the imine moiety after cooperative activation of the P−H bond across the M=C linkage, depending on the electronics of the applied phosphine. Deuteration experiments and computational studies proved that cyclometallation is initiated by the activation process at the M=C bond and triggered by the high electron density at the metal in the phosphido intermediates. Consistently, replacement of the trimethylsilyl (TMS) group by the electron-withdrawing 4-nitrophenyl substituent allowed the selective cooperative P−H activation to form stable activation products.  相似文献   
59.
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号