首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   8篇
  国内免费   2篇
化学   169篇
晶体学   2篇
力学   7篇
数学   34篇
物理学   32篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2020年   7篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   3篇
  2015年   7篇
  2014年   8篇
  2013年   12篇
  2012年   12篇
  2011年   21篇
  2010年   8篇
  2009年   14篇
  2008年   25篇
  2007年   10篇
  2006年   23篇
  2005年   16篇
  2004年   15篇
  2003年   5篇
  2002年   11篇
  2001年   2篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   3篇
  1996年   2篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1988年   2篇
  1983年   2篇
  1982年   1篇
  1978年   1篇
  1976年   1篇
排序方式: 共有244条查询结果,搜索用时 0 毫秒
181.
In this work, cationic and anionic microgels which are mainly formed from thermal responsive polymer, poly(N‐isopropylacrylamide), are prepared and mixed in water. These microgels interact with each other due to the electrostatic interaction, and aggregate voluntarily. By applying the microgel aggregating system, photo‐responsive aggregating system is constructed by using o‐nitrobenzaldehyde (NBA), which reacts and releases hydrogen triggered by photo stimuli. The microgel aggregates in an aqueous solution of NBA re‐disperse depending on the irradiation time of UV light. In addition, by masking the UV irradiated area, the resultant shapes of microgel aggregates are controlled. The aggregated microgel shows rapid and drastic volume changes in response to heat. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1317‐1322  相似文献   
182.
The modification of flat semiconductor surfaces with nanoscale materials has been the subject of considerable interest. This paper provides detailed structural examinations of gold nanoparticles covalently immobilized onto hydrogen-terminated silicon surfaces by a convenient thermal hydrosilylation to form Si-C bonds. Gold nanoparticles stabilized by omega-alkene-1-thiols with different alkyl chain lengths (C3, C6, and C11), with average diameters of 2-3 nm and a narrow size distribution were used. The thermal hydrosilylation reactions of these nanoparticles with hydrogen-terminated Si(111) surfaces were carried out in toluene at various conditions under N2. The obtained modified surfaces were observed by high-resolution scanning electron microscopy (HR-SEM). The obtained images indicate considerable changes in morphology with reaction time, reaction temperature, as well as the length of the stabilizing omega-alkene-1-thiol molecules. These surfaces are stable and can be stored under ambient conditions for several weeks without measurable decomposition. It was also found that the aggregation of immobilized particles on a silicon surface occurred at high temperature (> 100 degrees C). Precise XPS measurements of modified surfaces were carried out by using a Au-S ligand-exchange technique. The spectrum clearly showed the existence of Si-C bonds. Cross-sectional HR-TEM images also directly indicate that the particles were covalently attached to the silicon surface through Si-C bonds.  相似文献   
183.
Analytical and Bioanalytical Chemistry - DNA methylation is a typical epigenetic phenomenon. Numerous methods for detecting global DNA methylation levels have been developed, among which LC-MS/MS...  相似文献   
184.
Nanoporous TiO(2) films loaded with gold and silver nanoparticles exhibit negative potential changes and anodic currents in response to visible light irradiation, so that the films would potentially be applicable to inexpensive photovoltaic cells, photocatalysts and simple plasmon sensors.  相似文献   
185.
The effects of magnetization direction on the longitudinal modulus of magnetic gels, which consist of magnetized barium ferrite and poly(vinyl alcohol), have been investigated using 10 MHz ultrasonic waves. The modulus change due to magnetization depends on both the crosslinking density and magnetization direction. The modulus change increased and decreased when the strain direction was perpendicular and parallel to magnetization, respectively.  相似文献   
186.
This article describes a variety of monolayers anchored directly onto silicon surfaces without an oxide interlayer, their formation mechanisms, their technological applications, and our personal views on the future prospects for this field. The chemical modification of non-oxidized silicon surfaces utilizing monolayers was first reported in 1993. The basic finding that a non-oxidized silicon surface could be neutralized with alkyl chains through direct covalent linkage, i.e., silicon-carbon, has offered chemical scientists ease of handling even in an ambient environment and, thus, research has been predictably focused on forming anti-stiction coating films for nano- and micro-electromechanical systems (NEMS/MEMS). Such surface reforming has also been achieved by using other monolayers, which form interfacial bonds, e.g., silicon-nitrogen and silicon-oxygen. The resultant monolayer surfaces are useful for silicon-based applications including molecular electron transfer films, monolayer templates, molecular insulators, capsulators, and bioderivatives. Such monolayers are applicable not only for surface modification, but also for manipulating individual nanomaterials. By modifying the terminal groups of monolayers with nanomaterials including nanocrystals and biomolecules, the nanomaterials can remarkably be immobilized directly onto non-oxidized silicon surfaces based on the formation mechanisms of the monolayer. Such immobilizations will revolutionize the analysis of the specific features and capabilities of individual nanomaterials. Furthermore, the path will be opened for the development of more advanced monolayer-derived chip technology. To achieve this goal, it is extremely important to thoroughly understand the functionalization processes on silicon, since the resultant internal structures and properties of monolayer-derivative silicon may strongly depend on their course of formation.  相似文献   
187.
Thin-film polyimides were prepared by solvent-less vapor deposition polymerization (VDP) from pyromellitic dianhydride and 4,4′-oxydianiline at 200 °C for liner dielectric formation of vertical interconnects called through-silicon vias (TSVs) used in three-dimensionally stacked integrated circuit (3DICs). FTIR, synchrotron XPS, and TDS were employed for determining the imidization ratio, and in addition, the mechanical properties, coefficient of thermal expansion and Young's modulus, of the VDP polyimide were characterized on Si wafers. The VDP polyimide exhibited extremely high conformality, beyond 75%, toward high-aspect-ratio deep Si holes, compared with conventional SiO2 prepared by plasma-enhanced chemical vapor deposition. The adhesion between the VDP polyimide and Si wafer was enhanced by an Al-chelate promotor. Remarkably, the VDP polyimide TSV liner dielectrics showed much less thermomechanical stresses applied to the Si surrounding the TSVs than the plasma-chemical vapor deposition SiO2. The small keep-out zone is expected for scaling down highly reliable 3DICs for the upcoming real artificial intelligence society.  相似文献   
188.
(6Z,9Z,12Z)-6,9,12-Octadecatriene and (3Z,6Z,9Z,12Z)-3,6,9,12-icosatetraene, hydrocarbons unsaturated more highly than usual lepidopteran Type II pheromones, were identified from geometrid females of Hemithea tritonaria and Thalassodes immissaria intaminata, respectively. The triene was synthesized by a double Wittig reaction between hexanal and an ylide derived from (Z)-1,6-diiodo-3-hexene, and the tetraene was synthesized by a coupling between (Z)-3-undecenal and an ylide derived from (3Z,6Z)-1-iodo-3,6-nonadiene. Each synthetic compound attracted males of the corresponding emerald moths in a field.  相似文献   
189.
Monodispersed palladium nanoparticles protected with n-octyl isocyanide were prepared, and their hydrogen absorption behavior was evaluated. The formation of the nanoparticles has been confirmed by means of 1H NMR and elemental analysis. Fourier transform infrared (FT-IR) showed that three distinct bands (2156, 1964, and 1611 cm(-1)) assigned to mono-, double-, and triple-bridged isocyanide ligands on the palladium surface. The average diameter of the particles was estimated to be 2.1 +/- 0.7 nm from observation by transmission electron microscopy (TEM). X-ray photoelectron spectroscopy (XPS) analysis revealed that the particles contained Pd(0) with little amounts of Pd(II) or Pd(IV), in sharp contrast to the thiol- or phosphine-stabilized palladium nanoparticles. The absorption and desorption of hydrogen were reversible, and the reactions were much faster for the nanoparticles than for the bulk palladium metal, whereas the storage capacity was almost the same, 0.6 wt %.  相似文献   
190.
Sort the bigs from the smalls : Reverse‐selective membranes, through which bigger molecules selectively permeate, are attractive for developing chemical processes. A new adsorption‐based reverse‐selective membrane that utilizes a Na cation occluded in a zeolitic framework is presented. The membrane developed enables the selective permeation and separation of bigger polar molecules, such as methanol and water, from hydrogen above 473 K.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号