首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   459篇
  免费   4篇
  国内免费   5篇
化学   176篇
晶体学   9篇
力学   19篇
数学   212篇
物理学   52篇
  2020年   3篇
  2019年   4篇
  2017年   8篇
  2016年   10篇
  2015年   9篇
  2014年   15篇
  2013年   21篇
  2012年   23篇
  2011年   24篇
  2010年   19篇
  2009年   11篇
  2008年   22篇
  2007年   29篇
  2006年   36篇
  2005年   25篇
  2004年   27篇
  2003年   26篇
  2002年   25篇
  2001年   5篇
  2000年   4篇
  1999年   9篇
  1998年   4篇
  1997年   8篇
  1996年   5篇
  1995年   5篇
  1994年   1篇
  1993年   4篇
  1991年   3篇
  1990年   4篇
  1989年   3篇
  1988年   2篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   10篇
  1981年   7篇
  1980年   4篇
  1979年   3篇
  1978年   6篇
  1977年   7篇
  1976年   5篇
  1975年   1篇
  1974年   4篇
  1973年   3篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
排序方式: 共有468条查询结果,搜索用时 10 毫秒
461.
Accessing the microsecond dynamics of a single fluorescent molecule in real time is difficult because molecular fluorescence rates usually limit the time resolution to milliseconds. We propose to apply single-molecule temperature-cycle microscopy to probe molecular dynamics at microsecond timescales. Here, we follow donor and acceptor signals of single FRET-labeled polyprolines in glycerol to investigate their conformational dynamics. We observe a steady-state FRET efficiency distribution which differs from theoretical distributions for isotropically orientated fluorescent labels. This may indicate that the orientation of fluorescent labels in glycerol is not isotropic and may reflect the influence of the dye linkers. With proper temperature-cycle parameters, we observed large FRET changes in long series of cycles of the same molecule. We attribute the main conformational changes to reorientations of the fluorescent labels with respect to the oligopeptide chain, which take place in less than a few microseconds at the highest temperature of the cycle (250 K). We were able to follow the FRET efficiency of a particular construct for more than 2000 cycles. This trajectory displays switching between two conformations, which give rise to maxima in the FRET efficiency histogram. Our experiments open the possibility to study biomolecular dynamics at a time scale of a few microseconds at the single-molecule level.  相似文献   
462.
The S = 11 ground states of the Mn 7 family of mixed-valence complexes with a metal-centered hexagonal topology have been found by density functional theory calculations to arise by spin frustration involving small differences in the magnitudes of the two weakest interactions controlling the alignment of the central spin. Targeted structural perturbation has allowed a complex with the central spin flipped to be discovered, which thus possesses the maximum S = 16 ground state.  相似文献   
463.
Fluoride abstraction from a BODIPY dye gives a well defined borenium ion which can be converted to a borenium hydride via treatment with DIBAL-H.  相似文献   
464.
Heterogeneity and solid-like structures found near the glass transition provide a key to a better understanding of supercooled liquids and of the glass transition. However, the formation of solid-like structures and its effect on spatial heterogeneity in supercooled liquids is neither well documented nor well understood. In this work, we reveal the crystalline nature of the solid-like structures in supercooled glycerol by means of neutron scattering. The results indicate that inhomogeneous nucleation happens at temperatures near T(g). Nevertheless, the thermal history of the sample is essential for crystallization. This implies such structures in supercooled liquids strongly depend on thermal history. Our work suggests that different thermal histories may lead to different structures and therefore to different length and time scales of heterogeneity near the glass transition.  相似文献   
465.
A series of new quinodimethane-substituted terthiophene and quaterthiophene oligomers has been investigated for comparison with a previously studied quinoid oligothiophene that has demonstrated high mobilities and ambipolar transport behavior in thin-film transistor devices. Each new quinoidal thiophene derivative shows a reversible one-electron oxidation between 0.85 and 1.32 V, a quasi-reversible one-electron second oxidation between 1.37 and 1.96 V, and a reversible two-electron reduction between -0.05 and -0.23 V. The solution UV-vis-NIR spectrum of each compound is dominated by an intense (epsilon congruent with 100 000 M(-1) cm(-1)) low energy pi-pi transition that has a lambda(max) ranging between 648 and 790 nm. All X-ray crystal structures exhibit very planar quinoidal backbones and short intermolecular pi-stacking distances (3.335-3.492 A). Structures exhibit a single pi-stacking distance with parallel cofacial stacking (sulfur atoms of equivalent rings pointed in the same direction) or with alternating distances and antiparallel cofacial stacking (sulfur atoms of equivalent rings pointed in the opposite direction). Examples of the layered and herringbone-packing motifs are observed for both the parallel and the antiparallel cofacial stacking. Analysis of the X-ray structures and molecular orbital calculations indicates that all of these compounds have one-dimensional electronic band structures as a result of the pi-stacking. For structures with a unique pi-stacking distance, a simple geometric overlap parameter calculated from the shape of the molecule and the slip from perfect registry in the pi-stack correlates well with the transfer integrals (t) calculated using molecular orbital theory. The calculated valence (633 meV) and conduction (834 meV) bandwidths for a quinoid quaterthiophene structure are similar to those calculated for the benchmark pentacene and indicate that both hole and electron mobilities could be significant.  相似文献   
466.
Fluid monolayers of 1-palmitoyl-2-oleoyl-phosphatidylcholine collapse from an air/water interface to form a three-dimensional bulk phase at the equilibrium spreading pressure (pie) of approximately 47 mN/m. This phase transition limits access to higher surface pressures under equilibrium conditions or during slow continuous compressions. We have shown previously that these films avoid collapse and become metastable when compressed on a captive bubble to surface pressures above 60 mN/m and that the metastability persists during expansion at least to pie. Here, we first documented the extent of this persistent metastability. Rates of isobaric collapse during expansion of the metastable films were up to 3 orders of magnitude slower than those during the initial compression to high surface pressures. Recovery of the ability to collapse depended on the surface pressure to which the films were expanded and how long they were held there. Films reverted after brief exposure to 20 mN/m and after 1 h at 35 mN/m. At pie, films remained capable of reaching high surface pressures during slow compressions after 65 h, although an increase in compressibility above 55 mN/m suggested somewhat increased rates of collapse. We also determined if the films remained metastable when they acquired sufficient free area to allow reinsertion of collapsed material. Faster isobaric expansion in the presence of more collapsed material and with further deviation below pie supported the existence of reinsertion. The persistence of metastability to pie shows that films with sufficient free area to allow reinsertion remain resistant to collapse. Observations that suggest heterogeneous reinsertion, however, argue that free area may be distributed heterogeneously and leave open the possibility that metastability persists because significant regions retain a restricted free area.  相似文献   
467.
The syntheses, crystal structures, and magnetic characterizations of three new hexanuclear iron(III) compounds are reported. Known [Fe(6)O(2)(OH)(2)(O(2)CBu(t))(10)(hep)(2)] (1) is converted to new [Fe(6)O(2)(OH)(O(2)CBu(t))(9)(hep)(4)] (3) when treated with an excess of 2-(2-hydroxyethyl)-pyridine (hepH). Similarly, the new compound [Fe(6)O(2)(OH)(2)(O(2)CPh)(10)(hep)(2)] (2), obtained from the reaction of [Fe(3)O(O(2)CPh)(6)(H(2)O)(3)] with hepH, is converted to [Fe(6)O(2)(OH)(O(2)CPh)(9)(hep)(4)] (4) when treated with an excess of hepH. This can be reversed by recrystallization from MeCN. The cores of the four Fe(6) complexes all comprise two triangular [Fe(3)(mu(3)-O)(O(2)CR)(3)(hep)](+3) units connected at two of their apices by two sets of bridging ligands. However, 1 and 2 differ slightly from 3 and 4 in the precise way the two Fe(3) units are linked together. In 1 and 2, the two sets of bridging ligands are identical, consisting of one mu-hydroxo and two mu-carboxylate groups bridging each Fe(2) pair, i.e., a (mu-OH(-))(mu-O(2)CR(-))(2) set. In contrast, 3 and 4 have two different sets of bridging ligands, a (mu-OH(-))(mu-O(2)CR(-))(2) set as in 1 and 2, and a (mu-OR(-))(2)(mu-O(2)CR(-)) set, where RO(-) refers to the alkoxide arm of the hep(-) chelate. Variable-field and -temperature dc magnetization measurements establish that 1 and 2 have S = 5 ground states and significant and positive zero-field splitting parameters (D), whereas 3 and 4 have S = 0 ground states. This dramatic difference of 10 unpaired electrons in the ground state S values for near-isomeric compounds demonstrates an acute sensitivity of the magnetic properties to small structural changes. The factors leading to this have been quantitatively analyzed. The semiempirical method ZILSH, based on unrestricted molecular orbital calculations, was used to obtain initial estimates of the Fe(2) pairwise exchange interaction constants (J). These calculated values were then improved by fitting the experimental susceptibility versus T data, using a genetic algorithm approach. The final J values were then employed to rationalize the observed magnetic properties as a function of the core topologies and the presence of spin frustration effects. The large difference in ground state spin value was identified as resulting from a single structural difference between the two types of complexes, the different relative dispositions (cis vs trans) of two frustrated exchange pathways. In addition, use of the structural information and corresponding J values allowed a magnetostructural correlation to be established between the J values and both the Fe-O bond distances and the Fe-O-Fe angles at the bridging ligands.  相似文献   
468.
Scanning probe microscopy (SPM) techniques are used to characterize surfaces related to the processing of benzocyclobutene (BCB) dielectric thin films. Thermally cured resins and photodefineable resins are sold under the trade name CYLCOTENETM1) for electronic applications. TappingMode AFM (TMAFM) imaging is used to follow changes in adhesion promoter morphology upon baking to help explain adhesion performance. Power spectral density (PSD) analysis of TMAFM images of plasma treated BCB surfaces are unique and can be used to ‘fingerprint’ processes. Selective oxidation of the BCB surface can be used to fabricate a phase imaging standard for TMAFM. Near surface modulus of the BCB materials is 3.6 ± 0.2 GPa and the hardness is 0.38 ± 0.2 GPa measured by depth‐sensing nanoindentation. Creep recovery of indents can be used to qualitatively distinguish between thermal and photocureable materials. A heated tip in a scanning thermal microscope can induce the thermal curing of BCB over micron sized areas. Local thermal analysis with the same probe allows the measurement of the changes in the glass transition, Tg, at the surface with cure temperature.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号