全文获取类型
收费全文 | 182篇 |
免费 | 3篇 |
专业分类
化学 | 118篇 |
晶体学 | 2篇 |
力学 | 4篇 |
数学 | 24篇 |
物理学 | 37篇 |
出版年
2023年 | 2篇 |
2022年 | 1篇 |
2021年 | 6篇 |
2020年 | 3篇 |
2019年 | 8篇 |
2018年 | 4篇 |
2017年 | 5篇 |
2016年 | 10篇 |
2015年 | 5篇 |
2014年 | 8篇 |
2013年 | 16篇 |
2012年 | 20篇 |
2011年 | 16篇 |
2010年 | 15篇 |
2009年 | 12篇 |
2008年 | 8篇 |
2007年 | 11篇 |
2006年 | 10篇 |
2005年 | 9篇 |
2004年 | 3篇 |
2003年 | 4篇 |
2001年 | 1篇 |
1995年 | 1篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1991年 | 2篇 |
1990年 | 1篇 |
1985年 | 1篇 |
排序方式: 共有185条查询结果,搜索用时 15 毫秒
11.
12.
Theoretical and Mathematical Physics - The partition functions of three-dimensional N=2 supersymmetric gauge theories on different manifolds can be expressed as q-hypergeometric integrals.... 相似文献
13.
14.
A new method based on microcolumn packed with ionic liquid-modified silica combined with flame atomic absorption spectrometry has been developed for the determination of lead in environmental samples. Several factors influencing the preconcentration efficiency of lead and its subsequent determination, such as pH of the sample, flow rate, mass of ionic liquid, and interfering effect, have been investigated. Lead could be quantitatively retained by ionic liquid-modified silica in the pH range of 5-7, and then eluted completely with 3.0 mL 1.0 mol L−1 HCl. The detection limit of this method for lead was 0.7 μg L−1 with preconcentration factor of 185, and the relative standard deviation (RSD) was 4.2% at 0.1 μg mL−1 Pb(II). This method has been applied for the determination of trace amount of lead in NIST standard reference material 2709 (San Joaquin Soil) and river water samples with satisfactory results. 相似文献
15.
The effects of polyelectrolytes on the inhibition and aggregation of calcium oxalate crystallization
The influence of polyelectrolytes with different architecture on spontaneous batch crystallization of calcium oxalate was investigated. A series of acidic acrylate block copolymers were been made, by radical polymerization, with defined molecular weight and structure. Radical polymerization of acrylic acid (AA) was carried out in the presence of α‐thiopolyethylene glycol monomethylether as a chain transfer agent to produce poly(ethylene glycolblockacrylic acid) copolymers. Poly(ethylene glycol) (PEG) block length in the copolymers was controlled by using three different molecular weight chain transfer agents (Mn = 350, 750 and 2000 g/mol). The presence of copolymers inhibited the crystal growth of calcium oxalate possibly through adsorption onto the active growth sites for crystal growth due to the charge and hydrophilic effects. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
16.
Deniz Sinirlioglu Ali Ekrem Muftuoglu Kurtulus Golcuk Ayhan Bozkurt 《Journal of polymer science. Part A, Polymer chemistry》2014,52(13):1885-1897
This work uses a simple “grafting through” approach in the preparation of anhydrous poly(vinylidene fluoride) (PVDF)‐g‐PVTri polymer electrolyte membranes (PEMs). Alkaline‐treated PVDF was used as a macromolecule in conjunction with vinyltriazole in the graft copolymerization. The obtained polymer was subsequently doped with triflic acid (TA) at different stoichiometric ratios with respect to triazole units and the anhydrous PEMs (PVDF‐g‐PVTri‐(TA)x) were prepared. All samples were characterized by FTIR and 1H NMR. The composition of PVDF‐g‐PVTri was determined by energy dispersive spectroscopy. Thermal properties of the membranes were examined by thermogravimetric analysis and differential scanning calorimetry. The surface roughness and morphology of the membranes were studied using atomic force microscopy, X‐ray diffraction, and scanning electron microscopy. PVDF‐g‐PVTri‐(TA)3 (C3‐TA3) with a degree of grafting of 47.22% showed a maximum proton conductivity of 0.09 S cm?1 at 150 °C and anhydrous conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 1885–1897 相似文献
17.
Phosphonic acid functional polymers are currently of interest because of their high proton conductivity in humidified and anhydrous systems. In addition, heterocyclic compounds are used in anhydrous proton conducting polymer membranes. In that study, a new copolymer based on 1‐vinyl‐1,2,4‐triazole (VTri) and diisopropyl‐p‐vinylbenzyl phosphonate (VBP) was synthesized, and their thermal, chemical, and proton conducting properties were investigated. The copolymers were synthesized by free radical copolymerization of the corresponding monomers at several monomer feed ratios to obtain P(VTri‐co‐VBP) copolymers. The copolymer samples were then hydrolyzed to produce poly(vinyl triazole‐co‐vinyl phosphonic acid) copolymers. The composition of the copolymers was determined by elemental analysis. The copolymerization and hydrolysis reactions were verified by Fourier transform infrared spectroscopy and ion exchange capacity measurements. Thermogravimetry analysis indicates that the copolymers are thermally stable up to 300°C. In order to increase the proton conductivity, the copolymers were doped with H3PO4 at several stoichometric ratios. The proton conductivity increases with triazole and phosphoric acid content. In the absence of humidity, the copolymer electrolyte, P(VTri‐co‐VBPA)1:0.5 X = 2, showed a proton conductivity of 0.005 S/cm at 150°C. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
18.
Water‐Stable Zirconium‐Based Metal–Organic Framework Material with High‐Surface Area and Gas‐Storage Capacities 下载免费PDF全文
Dr. Oleksii V. Gutov Dr. Wojciech Bury Dr. Diego A. Gomez‐Gualdron Dr. Vaiva Krungleviciute Dr. David Fairen‐Jimenez Dr. Joseph E. Mondloch Dr. Amy A. Sarjeant Salih S. Al‐Juaid Prof. Dr. Randall Q. Snurr Prof. Dr. Joseph T. Hupp Prof. Dr. Taner Yildirim Prof. Dr. Omar K. Farha 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(39):12389-12393
We designed, synthesized, and characterized a new Zr‐based metal–organic framework material, NU‐1100 , with a pore volume of 1.53 ccg?1 and Brunauer–Emmett–Teller (BET) surface area of 4020 m2g?1; to our knowledge, currently the highest published for Zr‐based MOFs. CH4/CO2/H2 adsorption isotherms were obtained over a broad range of pressures and temperatures and are in excellent agreement with the computational predictions. The total hydrogen adsorption at 65 bar and 77 K is 0.092 g g?1, which corresponds to 43 g L?1. The volumetric and gravimetric methane‐storage capacities at 65 bar and 298 K are approximately 180 vSTP/v and 0.27 g g?1, respectively. 相似文献
19.
Dr. Guo‐Qiang Kong Zhi‐Da Han Dr. Yabing He Sha Ou Dr. Wei Zhou Prof. Dr. Taner Yildirim Prof. Dr. Rajamani Krishna Dr. Chao Zou Prof. Dr. Banglin Chen Prof. Dr. Chuan‐De Wu 《Chemistry (Weinheim an der Bergstrasse, Germany)》2013,19(44):14886-14894
Two new organic building units that contain dicarboxylate sites for their self‐assembly with paddlewheel [Cu2(CO2)4] units have been successfully developed to construct two isoreticular porous metal–organic frameworks (MOFs), ZJU‐35 and ZJU‐36, which have the same tbo topologies (Reticular Chemistry Structure Resource (RCSR) symbol) as HKUST‐1. Because the organic linkers in ZJU‐35 and ZJU‐36 are systematically enlarged, the pores in these two new porous MOFs vary from 10.8 Å in HKUST‐1 to 14.4 Å in ZJU‐35 and 16.5 Å in ZJU‐36, thus leading to their higher porosities with Brunauer–Emmett–Teller (BET) surface areas of 2899 and 4014 m2 g?1 for ZJU‐35 and ZJU‐36, respectively. High‐pressure gas‐sorption isotherms indicate that both ZJU‐35 and ZJU‐36 can take up large amounts of CH4 and CO2, and are among the few porous MOFs with the highest volumetric storage of CH4 under 60 bar and CO2 under 30 bar at room temperature. Their potential for high‐pressure swing adsorption (PSA) hydrogen purification was also preliminarily examined and compared with several reported MOFs, thus indicating the potential of ZJU‐35 and ZJU‐36 for this important application. Studies show that most of the highly porous MOFs that can volumetrically take up the greatest amount of CH4 under 60 bar and CO2 under 30 bar at room temperature are those self‐assembled from organic tetra‐ and hexacarboxylates that contain m‐benzenedicarboxylate units with the [Cu2(CO2)4] units, because this series of MOFs can have balanced porosities, suitable pores, and framework densities to optimize their volumetric gas storage. The realization of the two new organic building units for their construction of highly porous MOFs through their self‐assembly with [Cu2(CO2)4] units has provided great promise for the exploration of a large number of new tetra‐ and hexacarboxylate organic linkers based on these new organic building units in which different aromatic backbones can be readily incorporated into the frameworks to tune their porosities, pore structures, and framework densities, thus targeting some even better performing MOFs for very high gas storage and efficient gas separation under high pressure and at room temperature in the near future. 相似文献
20.
Bozkurt E Kartal I Karabulut B Uçar I 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2008,71(3):794-797
The electron paramagnetic resonance spectra of Cu(2+) impurities in [Co(nicotinamide)(2)(H(2)O)(4)](saccharinate)(2) single crystals have been studied at ambient temperature in three mutually perpendicular planes. The angular variation of the spectra shows that the Cu(2+) ion substitutes the Co(2+) site in the lattice. The EPR spectra of Cu(2+) ions are characteristic of tetragonally elongated octahedral site. The spin-Hamiltonien parameters were obtained from the single crystal EPR analysis. The ground-state wave function of Cu(2+) ion in the lattice has been constructed. 相似文献