首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   206篇
  免费   1篇
  国内免费   2篇
化学   131篇
力学   1篇
数学   58篇
物理学   19篇
  2023年   1篇
  2022年   5篇
  2021年   5篇
  2020年   4篇
  2019年   4篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   6篇
  2013年   11篇
  2012年   15篇
  2011年   19篇
  2010年   6篇
  2009年   8篇
  2008年   12篇
  2007年   18篇
  2006年   11篇
  2005年   14篇
  2004年   11篇
  2003年   12篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   2篇
  1997年   4篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1990年   3篇
  1989年   4篇
  1988年   2篇
  1987年   2篇
  1979年   1篇
  1978年   1篇
  1973年   2篇
  1972年   1篇
排序方式: 共有209条查询结果,搜索用时 31 毫秒
71.
The occupancy problem is generalized to the case where instead of throwing one ball at a time, a fixed size group of indistinguishable balls are distributed sequentially into cells. Bose-Einstein statistics is used for analyzing the distribution of the waiting time until each cell is occupied by at least one ball. Each trial is classified according to its jump size, i.e. the number of newly occupied cells. We propose an approach to decompose the occupancy and filling processes in terms of the jumps sizes using a multi-dimensional representation. A set of recursive equations is built in order to obtain the joint generating probability function of a series of random variables, each of which denotes the number of trials for a given jump size that occurred during the filling process. As a special case, the joint probability function of these random variables is obtained.  相似文献   
72.
The demand for clinical toxicology analytical methods for identifying drugs of abuse and medicinal drugs is steadily increasing. Structural elucidation of amino amide‐type local anesthetic drugs and their main metabolites by GC‐EI‐MS and LC‐ESI‐MS/MS is of great analytical challenge. These compounds exhibit only/mostly fragments/product ions representing the amine‐containing residue, while the aromatic amide moiety remains unidentified. This task becomes even more complicated when discrimination between positional isomers of such compounds is required. Here, we report the development of a derivatization procedure for the differentiation and structural elucidation of a mixture of local anesthetic drugs and their metabolites that possess tertiary and secondary amines in water and urine. A method based on two sequential “in‐vial” instantaneous derivatization processes at ambient temperature followed by LC‐ESI‐MS/MS analysis was developed. 2,2,2‐Trichloro‐1,1‐dimethylethyl chloroformate (TCDMECF) was utilized to selectively convert the secondary amines into their carbamate derivatives, followed by hydrogen peroxide addition to produce the corresponding tertiary amine oxides. The resulting derivatives exhibited rich fragmentation patterns, enabling improved structural elucidation of the original compounds. The developed method was successfully applied to the differentiation and structural elucidation of prilocaine and its four positional isomers, which all possess similar GC and LC retention times and four of them exhibit almost identical EI‐MS and ESI‐MS/MS spectra, enabling their structural elucidation in a single LC‐ESI‐MS/MS analysis. The developed technique is fast and simple and enables discrimination between isomers based on different diagnostic ions/fragmentation patterns.  相似文献   
73.
We describe cohomologically trivial internal categories in the categoryC of groups with operations satisfying certain conditions ([15], [16]). As particular cases we obtain: ifC=Gr, H0(C, –)=0 iff C is a connected internal category; ifC=Ab,H 1(C, –)=0 iff C is equivalent to the discrete internal category (Cokerd, Cokerd, 1, 1, 1, 1). We also discuss related questions concerning extensions, internal categories, their cohomology and equivalence in the categoryC.  相似文献   
74.
75.
We report the adaptation of the truncated Newton minimization package TNPACK for CHARMM and biomolecular energy minimization. TNPACK is based on the preconditioned linear conjugate–gradient technique for solving the Newton equations. The structure of the problem—sparsity of the Hessian—is exploited for preconditioning. Experience with the new version of TNPACK is presented on a series of molecular systems of biological and numerical interest: alanine dipeptide (N-methyl-alanyl-acetamide), a dimer of N-methyl-acetamide, deca-alanine, mellitin (26 residues), avian pancreatic polypeptide (36 residues), rubredoxin (52 residues), bovine pancreatic trypsin inhibitor (58 residues), a dimer of insulin (99 residues), and lysozyme (130 residues). Detailed comparisons among the minimization algorithms available in CHARMM, particularly those used for large-scale problems, are presented along with new mathematical developments in TNPACK. The new TNPACK version performs significantly better than ABNR, the most competitive minimizer in CHARMM, for all systems tested in terms of CPU time when curvature information (Hessian/vector product) is calculated by a finite-difference of gradients (the numeric option of TNPACK). The remaining derivative quantities are, however, evaluated analytically in TNPACK. The CPU gain is 50% or more (speedup factors of 1.5 to 2.5) for the largest molecular systems tested and even greater for smaller systems (CPU factors of 1 to 4 for small systems and 1 to 5 for medium systems). TNPACK uses curvature information to escape from undesired configurational regions and to ensure the identification of true local minima. It converges rapidly once a convex region is reached and achieves very low final gradient norms, such as of order 10?8, with little additional work. Even greater overall CPU gains are expected for large-scale minimization problems by making the architectures of CHARMM and TNPACK more compatible with respect to the second-derivative calculations. © 1994 by John Wiley & Sons, Inc.  相似文献   
76.
We discuss the three fundamental issues of a computational approach in structure prediction by potential energy minimization, and analyze them for the nucleic acid component deoxyribose. Predicting the conformation of deoxyribose is important not only because of the molecule's central conformational role in the nucleotide backbone, but also because energetic and geometric discrepancies from experimental data have exposed some underlying uncertainties in potential energy calculations. The three fundamental issues examined here are: (i) choice of coordinate system to represent the molecular conformation; (ii) construction of the potential energy function; and (iii) choice of the minimization technique. For our study, we use the following combination. First, the molecular conformation is represented in cartesian coordinate space with the full set of degrees of freedom. This provides an opportunity for comparison with the pseudorotation approximation. Second, the potential energy function is constructed so that all the interactions other than the nonbonded terms are represented by polynomials of the coordinate variables. Third, two powerful Newton methods that are globally and quadratically convergent are implemented: Gill and Murray's Modified Newton method and a Truncated Newton method, specifically developed for potential energy minimization. These strategies have produced the two experimentally-observed structures of deoxyribose with geometric data (bond angles and dihedral angles) in very good agreement with experiment. More generally, the application of these modeling and minimization techniques to potential energy investigations is promising. The use of cartesian variables and polynomial representation of bond length, bond angle and torsional potentials promotes efficient second-derivative computation and, hence, application of Newton methods. The truncated Newton, in particular, is ideally suited for potential energy minimization not only because the storage and computational requirements of Newton methods are made manageable, but also because it contains an important algorithmic adaptive feature: the minimization search is diverted from regions where the function is nonconvex and is directed quickly toward physically interesting regions.  相似文献   
77.
As J. W. Snow showed, every linear Mal’tsev condition on a variety of universal algebras, is equivalent to a relational condition on . Using slightly different relational reformulations of linear Mal’tsev conditions, we develop a purely categorical approach to these conditions. Received August 10, 2006; accepted in final form January 23, 2007.  相似文献   
78.
The physicochemical properties of 22 protic ionic liquids (PILs) and 6 protic molten salts, and the self-assembly behavior of 3 amphiphiles in the PILs, are reported. Structure-property relationships have been explored for the PILs, including the effect of increasing the substitution of ammonium cations and the presence of methoxy and hydroxyl moieties in the cation. Anion choices included the formate, pivalate, trifluoroacetate, nitrate, and hydrogen sulfate anions. This series of PILs had a diverse range of physicochemical properties, with ionic conductivities up to 51.10 mS/cm, viscosities down to 5.4 mPa.s, surface tensions between 38.3 and 82.1 mN/m, and densities between 0.990 and 1.558 g/cm3. PILs were designed with various levels of solvent cohesiveness, as quantified by the Gordon parameter. Fourteen PILs were found to promote the self-assembly of amphiphiles. High-throughput polarized optical microscopy was used to identify lamellar, hexagonal, and bicontinuous cubic amphiphile self-assembly phases. The presence and extent of amphiphile self-assembly have been discussed in terms of the Gordon parameter.  相似文献   
79.
We explore the controllability of nonadiabatic alignment in dissipative media, and the information content of control experiments regarding the bath properties and the bath system interactions. Our approach is based on a solution of the quantum Liouville equation within the multilevel Bloch formalism, assuming Markovian dynamics. We find that the time and energy characteristics of the laser fields that produce desired alignment characteristics at a predetermined instant respond in distinct manners to decoherence and to population relaxation, and are sensitive to both time scales. In particular, the time-evolving spectral composition of the optimal pulse mirrors the time-evolving rotational composition of the wave packet, and points to different mechanisms of rotational excitation in isolated systems, in systems subject to a decoherering bath, and in ones subject to a population relaxing bath.  相似文献   
80.
We derive an expression for the harmonic signal from nonadiabatically aligned molecules that accounts for both electronic and rotational motions. We identify a single approximation, which converts the expression into a physically transparent and computationally convenient form. Our analytical result gives explicitly the time dependence of the harmonic spectra, thus explaining the observations of a class of recent experiments. Moreover, it points to new opportunities for generating insights into the structure and dynamics of molecular systems through harmonic generation experiments from aligned molecules. This includes information regarding the rotational and electronic dynamics of isolated systems, as well as regarding the decoherence and relaxation in molecules subject to a dissipative environment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号