首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   19篇
  国内免费   5篇
化学   555篇
晶体学   4篇
力学   11篇
数学   72篇
物理学   78篇
  2023年   3篇
  2022年   14篇
  2021年   14篇
  2020年   11篇
  2019年   6篇
  2018年   7篇
  2017年   3篇
  2016年   17篇
  2015年   22篇
  2014年   19篇
  2013年   32篇
  2012年   46篇
  2011年   70篇
  2010年   29篇
  2009年   23篇
  2008年   46篇
  2007年   54篇
  2006年   44篇
  2005年   37篇
  2004年   43篇
  2003年   40篇
  2002年   33篇
  2001年   10篇
  2000年   8篇
  1999年   6篇
  1998年   8篇
  1997年   11篇
  1996年   10篇
  1995年   5篇
  1994年   7篇
  1993年   8篇
  1992年   1篇
  1991年   5篇
  1990年   1篇
  1989年   4篇
  1988年   2篇
  1987年   1篇
  1986年   4篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1974年   2篇
排序方式: 共有720条查询结果,搜索用时 0 毫秒
51.
We have studied electronic structure of Fe-deposited Au(111) by performing ab initio density functional theory calculations. We find that the magnetic moment on the deposited Fe layer is enhanced as compared to that in bulk iron. We observe a large number of new states on the Fe-deposited surface — one of which is in the majority spin channel having similar dispersion to that on the clean surface, and others in the minority spin channel. The effective mass of electrons in surface states near the Fermi level increases on Fe deposition. The electronic properties are found to be insensitive to the stacking of near-surface layers. We need to use very thick slabs in our calculations to avoid splitting of surface states due to spurious interactions between the two surfaces of the slab. Using the local density of states profiles for different surface states, we conclude that in scanning tunneling microscope experiments one can detect two of the surface states — one in the majority channel below the Fermi level, and another in the minority channel appearing just above the Fermi energy. We compare our results to those from scanning tunneling spectroscopy experiments.  相似文献   
52.
In this work we report on the electrochemical behavior of Ce(IV)/Ce(III) redox couple in pure N,N-dialkyl amides (N,N-DA), namely N,N-di(2-ethylhexyl)-n-butanamide (DEHBA), N,N-di(2-ethylhexyl)-iso-butanamide (DEHiBA), and N,N-di(2-ethylhexyl)-3,3-dimethyl butanamide (DEHDMBA) equilibrated with nitric aqueous solutions as an entry to the direct electrochemical characterization of plutonium in these extractants. Ce(IV)/Ce(III) redox process was used as a model. Its potential (E1/2≅1.02 V/SCE) is not affected by the temperature and the nature of the N,N-DA and this clearly indicates that the functionalities of these extractants produce the same relative effect on both +IV and +III oxidation states of the cerium cation. Linear variations of the current intensity of the reduction peak of Ce(IV) with the concentration of Ce(IV)/N,N-DAs/HNO3(5 M) solutions were obtained from cyclic voltammograms recorded at 25 °C and 40 °C. Due to the poor definition of the voltammograms in DEHiBA and DEHDMBA, such characterization allows only the evaluation of the performances of the chemical extraction of Ce(IV) from aqueous nitric acid solution by the undiluted DEHBA. To our knowledge, the electrochemical behavior of Ce(IV)/Ce(III) in N,N-DAs was not previously studied and our findings will for sure open the door for further investigations in this field.  相似文献   
53.
We established the charge and structure of the oil/water interface by combining ζ-potential measurements, sum frequency scattering (SFS) and molecular dynamics simulations. The SFS experiments show that the orientation of water molecules can be followed on the oil droplet/water interface. The average water orientation on a neat oil droplet/water interface is the same as the water orientation on a negatively charged interface. pH dependent experiments show, however, that there is no sign of selective adsorption of hydroxide ions. Molecular dynamics simulations, both with and without intermolecular charge transfer, show that the balance of accepting and donating hydrogen bonds is broken in the interfacial layer, leading to surface charging. This can account for the negative surface charge that is found in experiments.  相似文献   
54.
In the context of nanomedicine, liposils (liposomes and silica) have a strong potential for drug storage and release schemes: such materials combine the intrinsic properties of liposome (encapsulation) and silica (increased rigidity, protective coating, pH degradability). In this work, an original approach combining solid state NMR, molecular dynamics, first principles geometry optimization, and NMR parameters calculation allows the building of a precise representation of the organic/inorganic interface in liposils. {(1)H-(29)Si}(1)H and {(1)H-(31)P}(1)H Double Cross-Polarization (CP) MAS NMR experiments were implemented in order to explore the proton chemical environments around the silica and the phospholipids, respectively. Using VASP (Vienna Ab Initio Simulation Package), DFT calculations including molecular dynamics, and geometry optimization lead to the determination of energetically favorable configurations of a DPPC (dipalmitoylphosphatidylcholine) headgroup adsorbed onto a hydroxylated silica surface that corresponds to a realistic model of an amorphous silica slab. These data combined with first principles NMR parameters calculations by GIPAW (Gauge Included Projected Augmented Wave) show that the phosphate moieties are not directly interacting with silanols. The stabilization of the interface is achieved through the presence of water molecules located in-between the head groups of the phospholipids and the silica surface forming an interfacial H-bonded water layer. A detailed study of the (31)P chemical shift anisotropy (CSA) parameters allows us to interpret the local dynamics of DPPC in liposils. Finally, the VASP/solid state NMR/GIPAW combined approach can be extended to a large variety of organic-inorganic hybrid interfaces.  相似文献   
55.
The insoluble organic matter (IOM) of three carbonaceous meteorites (Orgueil, Murchison and Tagish Lake meteorites) and three samples of cherts (microcrystalline SiO2 rock) containing microfossils with age ranging between 45 million years and 3.5 billion years is studied by electron paramagnetic resonance (EPR). The age of the meteorites is that of the solar system (4.6 billion years). The purpose of this work was to determine the EPR parameters, which allow us to discriminate between biogenic and extra terrestrial origin for the organic matter. Such indicators should be relevant for the controversy regarding the biogenicity of the organic matter in the oldest cheroot (3.5 billion years) and in Martian meteorites containing microbe-like microstructures. The organic matter of meteorites contains a high concentration of diradicaloid moieties characterised by a diamagnetic ground state S = 0 and a thermally accessible triplet state S = 1. The three meteorites exhibit the same singlet-triplet gap (ST gap) DeltaE approximately 0.1 eV. To the best of our knowledge, such diradicaloids are unknown in insoluble organic matter of terrestrial origin. We have also shown that the EPR linewidth of insoluble organic matter in cherts and coals decrease logarithmically with the age of the organic matter. We conclude from this result that the organic matter in the oldest cherts (3.5 billion years) has the same age as their SiO2 matrix, and is not due to a latter contamination by bacteria, as was recently found in meteoritic samples.  相似文献   
56.
57.
Triacylglycerols (TAGs) provide a challenge for mass spectrometry (MS) analysis because of their complexity. In particular, for dietary, nutritional and metabolic purposes, the positional placement of fatty acids on the glycerol backbone of TAGs is a crucial aspect. To solve this problem, we have investigated the TAGs' fragmentation patterns using an ion trap mass spectrometer. A series of pure regioisomeric pairs of TAGs (POP/PPO, POO/OPO and OSO/SOO) were cationized by Ag+ after their separation by non‐aqueous reversed‐phase liquid chromatography (NARP‐LC) before MS to improve MS sensitivity. Electrospray ionization–MS (ESI‐MS) conditions were optimized in order to produce characteristic [M + Ag + AgNO3]+ ions from each TAG, which were then fragmented to produce MS/MS spectra and then fragmented further to produce up to MS5 spectra. The observation of ions produced by LC‐MS5 of on‐line Ag+‐cationized TAG provided unambiguous information on the fatty acid distribution on the glycerol backbone. These strategies of MS to MS5 experiments were applied to identify components and to determine the regiospecificity of TAG within a complex mixture of lipids in natural oils. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
58.
Zirconium oxyhydroxide nanoparticles prepared by an aqueous route were evaluated for Escherichia coli bacteria encapsulation. A low viability rate was measured 24 hours after immobilization that could be attributed to nanoparticle cytotoxicity. Moreover, the presence of glycerol, a long-term cell-preserving molecule, hindered gel formation, probably due to its adsorption on the nanoparticle surface. A comparison with boehmite and ferrihydrite gels previously synthesized following a similar aqueous colloidal route suggests that the generalization of this method will rely on a careful control of the nanoparticle surface reactivity and may require surface chemical modification.  相似文献   
59.
Restenosis results from intimal hyperplasia and constrictive remodeling following cardiovascular interventions. Photodynamic therapy (PDT) has been shown to inhibit intimal hyperplasia in vivo by preventing neointimal repopulation of the treated vessel. This study was undertaken in an attempt to further dissect the mechanisms by which PDT acts on secreted and extracellular matrix proteins to inhibit migration of cultured human vascular cells. PDT of three-dimensional collagen gels inhibited invasive human smooth muscle cell (SMC) migration, whereas cell-derived matrix metalloproteinase production remained unaltered. Additionally, PDT generated cross-links in the collagen gels, a result substantiated in an ex vivo model whereby PDT rendered the treated vessels resistant to pepsin digestion and inhibited invasive migration of SMC and fibroblasts. These data support the premise that by inducing matrix protein cross-links, rendering the vessel resistant to degradation, in vivo PDT inhibits repopulation of the vessel and therefore intimal hyperplasia.  相似文献   
60.
Sr(3)CaRu(2)O(9), a new 2:1 B-site ordered perovskite ruthenate, was synthesized and its structure determined based on powder X-ray, neutron and electron diffraction data. It is composed of one layer of CaO(6) alternating with two layers of RuO(6) perpendicular to the [111] axis of the cubic perovskite structure. The ordering leads to a [-Ru-Ru-Ca-] repeat unit along each of the pseudocubic directions. Sr(3)CaRu(2)O(9) is the first example of this structure-type to include a majority metal with d electrons (Ru(V), d(3)). Three-dimensional Sr(3)CaRu(2)O(9) can be transformed to the layered Ruddlesden-Popper phase Sr(1.5)Ca(0.5)RuO(4) (i.e., Sr(3)CaRu(2)O(8)) by reduction at 1200 degrees C in flowing argon. The original structure can be restored by oxidation of Sr(1.5)Ca(0.5)RuO(4) at 1000 degrees C in flowing oxygen. This remarkable transformation highlights the structural versatility afforded by the combination of ruthenium and calcium.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号