首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   308篇
  免费   1篇
化学   145篇
晶体学   1篇
力学   3篇
数学   53篇
物理学   107篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   4篇
  2014年   5篇
  2013年   16篇
  2012年   13篇
  2011年   13篇
  2010年   16篇
  2009年   7篇
  2008年   27篇
  2007年   14篇
  2006年   20篇
  2005年   13篇
  2004年   13篇
  2003年   8篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   9篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1974年   3篇
  1955年   3篇
  1954年   3篇
  1944年   4篇
  1942年   3篇
  1940年   1篇
  1935年   2篇
  1903年   1篇
排序方式: 共有309条查询结果,搜索用时 15 毫秒
81.
Recent optical kerr effect (OKE) studies have revealed that orientational relaxation of rodlike nematogens near the isotropic-nematic (I-N) phase boundary and also in the nematic phase exhibit temporal power law decay at intermediate times. Such behaviour has drawn an intriguing analogy with supercooled liquids. Here, we have investigated the single-particle and collective orientational dynamics of a family of model system of thermotropic liquid crystals using extensive computer simulations. Several remarkable features of glassy dynamics are on display including non-exponential relaxation, dynamical heterogeneity, and non-Arrhenius temperature dependence of the orientational relaxation time. Over a temperature range near the I-N phase boundary, the system behaves like a fragile glass-forming liquid. Using proper scaling, we construct the usual relaxation time versus inverse temperature plot and explicitly demonstrate that one can successfully define a density dependent fragility of liquid crystals. The fragility of liquid crystals shows a temperature and density dependence which is remarkably similar to the fragility of glass forming supercooled liquids. Energy landscape analysis of inherent structures shows that the breakdown of the Arrhenius temperature dependence of relaxation rate occurs at a temperature that marks the onset of the growth of the depth of the potential energy minima explored by the system.  相似文献   
82.
A new expression is derived for the differential reflectance from an arbitrary metal surface, with chemisorbed impurities, using p-polarized radiation. The use of the result, which depends entirely on the dielectric response tensor of the system, to study experimental Surface Reflectance data is discussed.  相似文献   
83.
Unfolded vs native CO-coordinated horse heart cytochrome c (h-cyt c) and a heme axial methionine mutant cyt c552 from Hydrogenobacter thermophilus ( Ht-M61A) are studied by IR absorption spectroscopy and ultrafast 2D-IR vibrational echo spectroscopy of the CO stretching mode. The unfolding is induced by guanidinium hydrochloride (GuHCl). The CO IR absorption spectra for both h-cyt c and Ht-M61A shift to the red as the GuHCl concentration is increased through the concentration region over which unfolding occurs. The spectra for the unfolded state are substantially broader than the spectra for the native proteins. A plot of the CO peak position vs GuHCl concentration produces a sigmoidal curve that overlays the concentration-dependent circular dichroism (CD) data of the CO-coordinated forms of both Ht-M61A and h-cyt c within experimental error. The coincidence of the CO peak shift curve with the CD curves demonstrates that the CO vibrational frequency is sensitive to the structural changes induced by the denaturant. 2D-IR vibrational echo experiments are performed on native Ht-M61A and on the protein in low- and high-concentration GuHCl solutions. The 2D-IR vibrational echo is sensitive to the global protein structural dynamics on time scales from subpicosecond to greater than 100 ps through the change in the shape of the 2D spectrum with time (spectral diffusion). At the high GuHCl concentration (5.1 M), at which Ht-M61A is essentially fully denatured as judged by CD, a very large reduction in dynamics is observed compared to the native protein within the approximately 100 ps time window of the experiment. The results suggest the denatured protein may be in a glassy-like state involving hydrophobic collapse around the heme.  相似文献   
84.
85.
The kinetics of phase separation subsequent to a finite temperature quench is assumed to be driven by diffusion on the altered free energy surface and is generally assumed to be slow. The situation can be different in phase separating liquid binary mixtures, especially for systems characterized by the large difference in mutual interactions between solute and solvent molecules. In such cases, the phase separation kinetics could be fast and may get completed within a short time (ns) scale. As a result, in these systems, one may observe diverse dynamical features arising out of local heterogeneity leading to the onset of phase separation through pattern formation, spinodal decomposition, nucleation, and growth. By using a coarse-grained analysis, we examine phase separation kinetics in each spatial grid and indeed observe important effects of initial heterogeneity on the subsequent evolution. Interestingly, we observe slower separation kinetics for those regions that correspond to the composition at the minimum of the high-temperature surface. The heterogeneous dynamics has been captured here through the non-linear susceptibility function, which shows a pattern similar to what is observed in the supercooled liquid. Each grid shows somewhat different dynamics in the three-stage (exponential, power-law, and logarithmic regime) phase separation dynamics. The late stage of phase separation kinetics is usually attributed to the coarsening of the phase-separated domains. However, in a liquid binary mixture, the late-stage power-law decay undergoes a further change. A new dynamical regime arises characterized by a logarithmic time dependence, which is due to the “smoothening” of the rough interface of already well-separated phases. This can also be described as opposite to the roughening transition described by Chui and Weeks [Phys. Rev. Lett. 40, 733 (1978)]. This reverse roughening transition can explain the logarithmic time dependence observed in the simulation.  相似文献   
86.
87.
We report a quite unusual feature of four liquid-liquid reentrant transitions in ethanol (E)+water (W)+ammonium sulfate mixture by meticulous tuning of the ammonium sulfate concentration in a narrow range, as a function of temperature, at atmospheric pressure. Detailed exploration of the intricate phase behavior in terms of E/W sections shows that the range of triple reentrance shrinks with increasing E/W. The behavior of osmotic susceptibility is investigated by light scattering, near the critical point, in the one-phase region by varying the temperature at fixed concentration of the components, in a particular E/W section. The critical exponent of susceptibility (gamma) and correlation length (nu) are observed to have Fisher renormalized Ising values [Phys. Rev. 176, 237 (1968)], with gamma(r)=1.41 and nu(r)=0.718. The effective susceptibility exponent, gamma(eff), exhibits a sharp, nonmonotonic crossover from Ising to mean-field critical behavior, which is completed outside the critical regime. The amplitude of the correlation length, xi(o)(=21.2+/-0.4 A), deduced from light scattering experiment, is an order of magnitude larger than the typical values in usual aqueous electrolyte systems. This value of xi(o) is further verified from small-angle x-ray scattering (SAXS) experiments and found to be consistent. SAXS experiments on the critical sample reveal the presence of long-ranged intermolecular correlations, leading to supramolecular structuring, at a temperature far away from the critical point. These results convincingly demonstrate that the finite length scale arising due to the structuring competes with the diverging correlation length of critical concentration fluctuations, which influences the nonasymptotic critical behavior in this aqueous electrolyte system. The sulphate ions play a dominant role in both structuring and the complex phase behavior.  相似文献   
88.
The heat capacity of a supercooled liquid subjected to a temperature cycle through its glass transition is studied within a kinetic model. In this model, the beta process is assumed to be thermally activated and described by a two-level system. The alpha process is described as a beta relaxation mediated cooperative transition in a double well. The overshoot of the heat capacity during the heating scan is well reproduced and is shown to be directly related to delayed energy relaxation in the double well. In addition, the calculated scan rate dependencies of the glass transition temperature T(g) and the limiting fictive temperature T(f) (L) show qualitative agreement with the known results. Heterogeneity is found to significantly reduce the overshoot of heat capacity. Furthermore, the frequency dependent heat capacity has been calculated within the present framework and found to be rather similar to the experimentally observed behavior of supercooled liquids.  相似文献   
89.
The spectrum of B2Σ+-X2Σ+ system of AlO has been recorded on BOMEM DA8 Fourier transform spectrometer at an apodized resolution of 0.05 cm−1. Nineteen bands of the Δv = 1, 0, −1, and −2 sequences of this band system have been analyzed for the rotational structure. Out of which seven bands, viz. 3-2, 4-3, 2-3, 3-4, 4-5, 5-6 and 6-7 have been analyzed for the first time. The rotational lines of these 19 bands along with 20 earlier analyzed bands, a total of 7200 lines, have been fitted in a simultaneous least squares fit. The study has resulted in determining more precise vibrational and rotational constants of the two states. Because of the high resolution employed it became necessary to invoke H0 and H1 coefficients, and a fifth order term to explain the anomalous spin-doubling observed in the v″ = 5, 6 and 7 levels of the X2Σ+ state.  相似文献   
90.
A self-consistent microscopic theory is developed to understand the anomalously weak concentration dependence of ionic self-diffusion coefficient D(ion) in electrolyte solutions. The self-consistent equations are solved by using the mean spherical approximation expressions of the static pair correlation functions for unequal sizes. The results are in excellent agreement both with the known experimental results for many binary electrolytes and also with the new Brownian dynamics simulation results. The calculated velocity time correlation functions also show quantitative agreement with simulations. The theory also explains the reason for observing different D(ion) in recent NMR and neutron scattering experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号