首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   2篇
化学   145篇
晶体学   1篇
力学   3篇
数学   53篇
物理学   107篇
  2023年   3篇
  2022年   3篇
  2021年   2篇
  2018年   4篇
  2017年   3篇
  2016年   7篇
  2015年   4篇
  2014年   5篇
  2013年   16篇
  2012年   13篇
  2011年   13篇
  2010年   16篇
  2009年   7篇
  2008年   27篇
  2007年   14篇
  2006年   20篇
  2005年   13篇
  2004年   13篇
  2003年   8篇
  2002年   5篇
  2001年   4篇
  2000年   5篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   9篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   2篇
  1990年   6篇
  1989年   5篇
  1988年   3篇
  1987年   6篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   5篇
  1981年   4篇
  1979年   3篇
  1978年   2篇
  1976年   2篇
  1974年   3篇
  1955年   3篇
  1954年   3篇
  1944年   4篇
  1942年   3篇
  1940年   1篇
  1935年   2篇
  1903年   1篇
排序方式: 共有309条查询结果,搜索用时 125 毫秒
51.
52.
The mechanism and the rate of hydrogen bond-breaking in the hydration layer surrounding an aqueous protein are important ingredients required to understand the various aspects of protein dynamics, its function, and stability. Here, we use computer simulation and a time correlation function technique to understand these aspects in the hydration layer of lysozyme. Water molecules in the layer are found to exhibit three distinct bond-breaking mechanisms. A large angle orientational jump of the donor water molecule is common among all of them. In the most common ( approximately 80%) bond-breaking event in the layer, the new acceptor water molecule comes from the first coordination shell (initially within 3.5 A of the donor), and the old acceptor water molecule remains within the first coordination shell, even after the bond-breaking. This is in contrast to that in bulk water, in which both of the acceptor molecules involve the second coordination shell. Additionally, the motion of the incoming and the outgoing acceptor molecules involved is not diffusive in the hydration layer, in contrast to their observed diffusive motion in the bulk. The difference in rotational dynamics between the bulk and the hydration layer water molecules is clearly manifested in the calculated time-dependent angular van Hove self-correlation function ( G(theta, t)) which has a pronounced two-peak structure in the layer, and this can be traced to the constrained translational motion in the layer. The longevity of the surrounding hydrogen bond network is found to be significantly enhanced near a hydrophilic residue.  相似文献   
53.
The mechanism of a protein's diffusion along a DNA segment is a subject of much current interest because of the involvement of this diffusion in numerous biological processes, including the recognition of DNA sequences and chemical modifications of DNA. In this work we present a theoretical derivation of the diffusion coefficient of a nonspecifically bound protein, assuming that the protein follows a helical track along the DNA. It is shown that, for protein-sized molecules, the principal contribution to the total translational friction comes from the curvilinear motion along the helix, and this contribution is given by 6pietaRR(oc)(2) + 8pietaR(3), where R is the protein radius, ROC is the distance of separation between the center of mass of the protein and the helical axis of DNA, and eta is the viscosity of the medium. The translational diffusion of the protein along the helical track of DNA is thus predicted to have a nearly R(-3) size dependence, not the R(-1) dependence characterizing simple translational diffusion. It is shown that this expression gives rather good estimates of the translational diffusion coefficient measured in single molecule experiments.  相似文献   
54.
55.
56.
We present surface reconstruction-induced C−C coupling whereby CO2 is converted into ethylene. The wurtzite phase of CuGaS2. undergoes in situ surface reconstruction, leading to the formation of a thin CuO layer over the pristine catalyst, which facilitates selective conversion of CO2 to ethylene (C2H4). Upon illumination, the catalyst efficiently converts CO2 to C2H4 with 75.1 % selectivity (92.7 % selectivity in terms of Relectron) and a 20.6 μmol g−1 h−1 evolution rate. Subsequent spectroscopic and microscopic studies supported by theoretical analysis revealed operando-generated Cu2+, with the assistance of existing Cu+, functioning as an anchor for the generated *CO and thereby facilitating C−C coupling. This study demonstrates strain-induced in situ surface reconstruction leading to heterojunction formation, which finetunes the oxidation state of Cu and modulates the CO2 reduction reaction pathway to selective formation of ethylene.  相似文献   
57.
The ultrafast vibrational phase relaxation of O–H stretch in bulk water is investigated in molecular dynamics simulations. The dephasing time (T2) of the O–H stretch in bulk water calculated from the frequency fluctuation time correlation function (Cω(t)) is in the range of 70–80 femtosecond (fs), which is comparable to the characteristic timescale obtained from the vibrational echo peak shift measurements using infrared photon echo [W.P. de Boeij, M.S. Pshenichnikov, D.A. Wiersma, Ann. Rev. Phys. Chem. 49 (1998) 99]. The ultrafast decay of Cω(t) is found to be responsible for the ultrashort T2 in bulk water. Careful analysis reveals the following two interesting reasons for the ultrafast decay of Cω(t). (A) The large amplitude angular jumps of water molecules (within 30–40 fs time duration) provide a large scale contribution to the mean square vibrational frequency fluctuation and gives rise to the rapid spectral diffusion on 100 fs time scale. (B) The projected force, due to all the atoms of the solvent molecules on the oxygen (FO(t)) and hydrogen (FH(t)) atom of the O–H bond exhibit a large negative cross-correlation (NCC). We further find that this NCC is partly responsible for a weak, non-Arrhenius temperature dependence of the dephasing rate.  相似文献   
58.
Electronic absorption and steady state emission properties of a hemicyanine dye [4-[4-(dimethylamino)styryl]-1-docosylpyridinium bromide], have been studied in several pure solvents and two mixed binary solvents (water+ethanol and water+acetonitrile). In pure solvents the band-width of the absorption spectrum correlates well with the Stoke's shift. In mixed aqueous solvents two different molecular forms of the solute, viz. the monomer and the dimer of the solute exists in equilibrium. Thermodynamic parameters (e.g. the Delta G degrees and Delta H degrees ) characterizing the equilibrium have been determined. While the value of Delta G degrees changes very slightly with the composition of the binary mixture, the value of Delta H degrees has been observed to depend significantly with solvent composition.  相似文献   
59.
The linear infrared and two-dimensional infrared (2D IR) spectra in the amide-I region of N-acetyl tryptophan methyl amide (NATMA) in solvents of varying polarity are reported. The two amide-I transitions have been assigned unambiguously by using 13C isotopic substitution of the carbonyl group. The amide unit at the amino end shows a lower transition frequency in CH2Cl2 and methanol, while the acetyl end has a lower transition frequency in D2O. Multiple conformers exist in CH2Cl2 and methanol, but only one conformer is evident in D2O. The 2D IR cross peaks from the intermode coupling yield off-diagonal anharmonicities 2.5 +/- 0.5, 3.25 +/- 0.5, and 3.0 +/- 0.5 cm(-1) in CH2Cl2, methanol, and D2O, respectively, which by simple matrix diagonalization yield the coupling constants 8.0 +/- 0.5, 8.0 +/- 1.0, and 5.5 +/- 1.0 cm(-1). The major conformer in CH2Cl2 corresponds to a C7 structure, in agreement with that found in the gas phase [Dian, B. C.; Longarte, A.; Mercier, S.; Evans, D. A.; Wales, D. J.; Zwier, T. S. J. Chem. Phys. 2002, 117, 10688-10702] with intramolecular hydrogen bonding between the acetyl end C=O and the amino end N-H. The backbone dihedral angles (phi, psi) are determined to be in the ranges of (-55 +/- 5 degrees , 30 +/- 5 degrees ), (120 +/- 10 degrees , -20 +/- 10 degrees ), and (+/-160 +/- 10 degrees , +/-75 +/- 10 degrees ) in CH2Cl2, methanol, and D2O, respectively.  相似文献   
60.
Recent optical Kerr effect experiments have revealed a power law decay of the measured signal with a temperature independent exponent at short-to-intermediate times for a number of liquid crystals in the isotropic phase near the isotropic-nematic transition and supercooled molecular liquids above the mode coupling theory critical temperature. In this work, the authors investigate the temperature dependence of short-to-intermediate time orientational relaxation in a model thermotropic liquid crystal across the isotropic-nematic transition and in a binary mixture across the supercooled liquid regime in molecular dynamics simulations. The measure of the experimentally observable optical Kerr effect signal is found to follow a power law decay at short-to-intermediate times for both systems in agreement with recent experiments. In addition, the temperature dependence of the power law exponent is found to be rather weak. As the model liquid crystalline system settles into the nematic phase upon cooling, the decay of the single-particle second-rank orientational time correlation function exhibits a pattern that is similar to what has been observed for supercooled liquids.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号