首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1226篇
  免费   18篇
  国内免费   16篇
化学   646篇
晶体学   5篇
力学   59篇
数学   303篇
物理学   247篇
  2022年   9篇
  2019年   16篇
  2017年   13篇
  2016年   22篇
  2015年   19篇
  2014年   15篇
  2013年   39篇
  2012年   48篇
  2011年   45篇
  2010年   42篇
  2009年   22篇
  2008年   40篇
  2007年   55篇
  2006年   40篇
  2005年   35篇
  2004年   17篇
  2003年   22篇
  2002年   22篇
  2001年   28篇
  2000年   31篇
  1999年   23篇
  1998年   12篇
  1997年   13篇
  1996年   32篇
  1995年   24篇
  1994年   21篇
  1993年   17篇
  1992年   21篇
  1991年   17篇
  1990年   16篇
  1989年   13篇
  1988年   14篇
  1987年   21篇
  1986年   14篇
  1985年   21篇
  1984年   12篇
  1983年   18篇
  1982年   24篇
  1981年   19篇
  1980年   19篇
  1979年   20篇
  1978年   24篇
  1977年   17篇
  1976年   15篇
  1975年   13篇
  1974年   25篇
  1973年   24篇
  1971年   12篇
  1970年   15篇
  1969年   10篇
排序方式: 共有1260条查询结果,搜索用时 15 毫秒
101.
The unimolecular reactions of radical cations and cations derived from phenylarsane, C6H5AsH2 (1) and dideutero phenylarsane, C6H5AsD2 (1-d2), were investigated by methods of tandem mass spectrometry and theoretical calculations. The mass spectrometric experiments reveal that the molecular ion of phenylarsane, 1*+, exhibits different reactivity at low and high internal excess energy. Only at low internal energy the observed fragmentations are as expected, that is the molecular ion 1*+ decomposes almost exclusively by loss of an H atom. The deuterated derivative 1-d2 with an AsD2 group eliminates selectively a D atom under these conditions. The resulting phenylarsenium ion [C6H5AsH]+, 2+, decomposes rather easily by loss of the As atom to give the benzene radical cation [C6H6]*+ and is therefore of low abundance in the 70 eV EI mass spectrum. At high internal excess energy, the ion 1*+ decomposes very differently either by elimination of an H2 molecule, or by release of the As atom, or by loss of an AsH fragment. Final products of these reactions are either the benzoarsenium ion 4*+, or the benzonium ion [C6H7]+, or the benzene radical cation, [C6H6]*+. As key-steps, these fragmentations contain reductive eliminations from the central As atom under H-H or C-H bond formation. Labeling experiments show that H/D exchange reactions precede these fragmentations and, specifically, that complete positional exchange of the H atoms in 1*+ occurs. Computations at the UMP2/6-311+G(d)//UHF/6-311+G(d) level agree best with the experimental results and suggest: (i) 1*+ rearranges (activation enthalpy of 93 kJ mol(-1)) to a distinctly more stable (DeltaH(r)(298) = -64 kJ mol(-1)) isomer 1 sigma*+ with a structure best represented as a distonic radical cation sigma complex between AsH and benzene. (ii) The six H atoms of the benzene moiety of 1 sigma*+ become equivalent by a fast ring walk of the AsH group. (iii) A reversible isomerization 1+<==>1 sigma*+ scrambles eventually all H atoms over all positions in 1*+. The distonic radical cation 1*+ is predisposed for the elimination of an As atom or an AsH fragment. The calculations are in accordance with the experimentally preferred reactions when the As atom and the AsH fragment are generated in the quartet and triplet state, respectively. Alternatively, 1*(+) undergoes a reductive elimination of H2 from the AsH2 group via a remarkably stable complex of the phenylarsandiyl radical cation, [C6H5As]*+ and an H2 molecule.  相似文献   
102.
The widely debated reaction mechanism for the conversion of methanol to hydrocarbons over acidic zeolite H-ZSM-5 has been investigated using isotopic labeling. The mechanistic findings for H-ZSM-5 are clearly different from those previously described at a detailed level for H-beta and H-SAPO-34 catalysts. On the basis of the current set of data, we can state that, for H-ZSM-5, ethene appears to be formed exclusively from the xylenes and trimethylbenzenes. Moreover, propene and higher alkenes are to a significant extent formed from alkene methylations and interconversions. This implies that ethene formation is mechanistically separated from the formation of higher alkenes, an insight of utmost importance for understanding and possibly controlling the ethene/propene selectivity in methanol-to-alkenes catalysis.  相似文献   
103.
104.
Chemical dimerizers are powerful tools for non‐invasive manipulation of enzyme activities in intact cells. Here we introduce the first rapidly reversible small‐molecule‐based dimerization system and demonstrate a sufficiently fast switch‐off to determine kinetics of lipid metabolizing enzymes in living cells. We applied this new method to induce and stop phosphatidylinositol 3‐kinase (PI3K) activity, allowing us to quantitatively measure the turnover of phosphatidylinositol 3,4,5‐trisphosphate (PIP3) and its downstream effectors by confocal fluorescence microscopy as well as standard biochemical methods.  相似文献   
105.
106.
107.
The development of a sensitive assay for the quantitative analysis of carbohydrates from human plasma using LC/MS/MS is described in this paper. After sample preparation, carbohydrates were cationized by Cs(+) after their separation by normal phase liquid chromatography on an amino based column. Cesium is capable of forming a quasi-molecular ion [M + Cs](+) with neutral carbohydrate molecules in the positive ion mode of electrospray ionization mass spectrometry. The mass spectrometer was operated in multiple reaction monitoring mode, and transitions [M + 133] --> 133 were monitored (M, carbohydrate molecular weight). The new method is robust, highly sensitive, rapid, and does not require postcolumn addition or derivatization. It is useful in clinical research for measurement of carbohydrate molecules by isotope dilution assay.  相似文献   
108.
The reaction products of an addition reaction of five different silicon tetrahalides with the aromatic nitro­gen base 4‐methyl­pyridine are presented. The following five structures are isomorphous: (I) tetra­chloro­bis(4‐methyl­pyridine)­silicon, C12H14­Cl4­N2Si, (II) bromo­tri­chloro­bis(4‐methyl­pyridine)­silicon, C12H14­Br­Cl3N2Si, (III) di­bromo­di­chloro­bis(4‐methyl­pyridine)­silicon, C12H14­Br2­Cl2N2Si, (IV) tri­bromo­chloro­bis(4‐methyl­pyridine)­silicon, C12H14Br3­Cl­N2Si, and (V) tetra­bromo­bis(4‐methyl­pyridine)­silicon, C12H14Br4N2Si. The mol­ecules of (I) and (V), with D2h symmetry, have crystallographic C2h symmetry, while the molecules of (II), (III) and (IV) have a lower molecular symmetry, but as a result of the disorder of the halogen ligands, they appear to be of the same crystallographic symmetry. The environment around the Si atom can be described as a slightly distorted octahedron with the methyl­pyridine ligands occupying axial positions and the four halogen ligands in the equatorial plane. In spite of the different substitution pattern of the silicon centre, there are only insignificant differences between these five structures.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号