In univariate Padé approximation we learn from the Froissart phenomenon that Padé approximants to perturbed Taylor series exhibit almost cancelling pole–zero combinations that are unwanted. The location of these pole–zero doublets was recently characterized for rational functions by the so‐called Froissart polynomial. In this paper the occurrence of the Froissart phenomenon is explored for the first time in a multivariate setting. Several obvious questions arise. Which definition of Padé approximant is to be used? Which multivariate rational functions should be investigated? When considering univariate projections of these functions, our analysis confirms the univariate results obtained so far in [13], under the condition that the noise is added after projection. At the same time, it is apparent from section 4 that for the unprojected multivariate Froissart polynomial no conjecture can be formulated yet.
This paper presents a new generic Evolutionary Algorithm (EA) for retarding the unwanted effects of premature convergence. This is accomplished by a combination of interacting generic methods. These generalizations of a Genetic Algorithm (GA) are inspired by population genetics and take advantage of the interactions between genetic drift and migration. In this regard a new selection scheme is introduced, which is designed to directedly control genetic drift within the population by advantageous self-adaptive selection pressure steering. Additionally this new selection model enables a quite intuitive heuristics to detect premature convergence. Based upon this newly postulated basic principle the new selection mechanism is combined with the already proposed Segregative Genetic Algorithm (SEGA), an advanced Genetic Algorithm (GA) that introduces parallelism mainly to improve global solution quality. As a whole, a new generic evolutionary algorithm (SASEGASA) is introduced. The performance of the algorithm is evaluated on a set of characteristic benchmark problems. Computational results show that the new method is capable of producing highest quality solutions without any problem-specific additions. 相似文献