首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8125篇
  免费   368篇
  国内免费   36篇
化学   5686篇
晶体学   20篇
力学   204篇
数学   1398篇
物理学   1221篇
  2023年   77篇
  2022年   112篇
  2021年   135篇
  2020年   190篇
  2019年   190篇
  2018年   115篇
  2017年   115篇
  2016年   357篇
  2015年   314篇
  2014年   296篇
  2013年   472篇
  2012年   554篇
  2011年   652篇
  2010年   378篇
  2009年   321篇
  2008年   515篇
  2007年   462篇
  2006年   438篇
  2005年   409篇
  2004年   347篇
  2003年   315篇
  2002年   288篇
  2001年   169篇
  2000年   121篇
  1999年   120篇
  1998年   93篇
  1997年   102篇
  1996年   103篇
  1995年   85篇
  1994年   59篇
  1993年   62篇
  1992年   53篇
  1991年   35篇
  1990年   36篇
  1989年   29篇
  1988年   34篇
  1987年   26篇
  1986年   31篇
  1985年   24篇
  1984年   22篇
  1983年   14篇
  1982年   22篇
  1981年   16篇
  1980年   18篇
  1979年   10篇
  1978年   21篇
  1977年   13篇
  1975年   11篇
  1974年   13篇
  1970年   8篇
排序方式: 共有8529条查询结果,搜索用时 15 毫秒
81.
A straightforward chiral pool synthesis for the glycosidase inhibitor calystegine A7 (isolated from Lycium chinense) from methyl α-d-glucopyranoside is described. Keysteps of this synthesis include a ultrasound assisted Zn-mediated tandem ring opening reaction followed by a Grubbs' catalyst mediated ring closure metathesis.  相似文献   
82.
Particle-level simulations are performed to study semidilute suspensions of monodispersed non-Brownian fibers in shear flow, with a Newtonian fluid medium. The incompressible three-dimensional Navier-Stokes equations are used to describe the motion of the medium, while fibers are modeled as chains of fiber segments, interacting with the fluid through viscous drag forces. The two-way coupling between the solids and the fluid phase is taken into account by enforcing momentum conservation. The model includes long-range and short-range hydrodynamic fiber-fiber interactions, as well as mechanical interactions. The simulations rendered the time-dependent fiber orientation distribution, whose time average was found to agree with experimental data in the literature. The viscosity and first normal stress difference was calculated from the orientation distribution using the slender body theory of Batchelor [J. Fluid Mech. 46, 813 (1971)], with corrections for the finite fiber aspect ratios. The viscosity was also obtained from direct computation of the shear stresses of the suspension for comparison. These two types of predictions compared well in the semidilute regime. At higher concentrations, however, a discrepancy was seen, most likely due to mechanical interactions, which are only accounted for in the direct computation method. The simulated viscosity determined directly from shear stresses was in fair agreement with experimental data found in the literature. The first normal stress difference was found to be proportional to the square of the volume concentration of fibers in the semidilute regime. As concentrations approached the concentrated regime, the first normal stress difference became proportional to volume concentration. It was also found that the coefficient of friction has a strong influence on the tendency for flocculation as well as the apparent viscosity of the suspension in the semidilute regime.  相似文献   
83.
We introduce a new concept, the Young measure on micropatterns, to study singularly perturbed variational problems that lead to multiple small scales depending on a small parameter ε. This allows one to extract, in the limit ε → 0, the relevant information at the macroscopic scale as well as the coarsest microscopic scale (say εα) and to eliminate all finer scales. To achieve this we consider rescaled functions Rx (t) := x (s + εαt) viewed as maps of the macroscopic variable s ∈ Ω with values in a suitable function space. The limiting problem can then be formulated as a variational problem on the Young measures generated by Rεx. As an illustration, we study a one‐dimensional model that describes the competition between formation of microstructure and highest gradient regularization. We show that the unique minimizer of the limit problem is a Young measure supported on sawtooth functions with a given period. © 2001 John Wiley & Sons, Inc.  相似文献   
84.
Cover Picture     
The cover picture shows the metalloporphyrin heterodimer [(tpp)Mo$\rm{\mathop{-}^{4}}$Re(oep)](+) with the novel [Mo$\rm{\mathop{-}^{4}}$Re](5+) core. The core represents the first example of a quadruple bond between elements of different triads, thus proving that heterometallic quadruple bonds are not limited to the Group 6 metals. From the space-filling model it is clear that there is no interaction between the stabilizing porphyrin ligands. The ORTEP plot in a projection along the Re-Mo axis emphasizes the perfectly eclipsed geometry of the porphyrins, which is unambiguous proof of the existence of the quadruple bond in the solid state. The diamagnetism and large magnetic anisotropy of the cation, as determined by (1)H NMR spectroscopy, indicate that the quadruple bond is retained in solution. A logical and well-defined synthetic route was used to synthesize the dimer, and can be extended to other metalloporphyrins to generate further novel quadruple bonds (the picture was generated by Marina Boulan, St. Petersburg, Russia), full details are reported by J. P. Collman et al. on p. 1271 ff.  相似文献   
85.
Multifunctional gold nanoparticle-peptide complexes for nuclear targeting   总被引:7,自引:0,他引:7  
The ability of peptide-modified gold nanoparticles to target the nucleus of HepG2 cells was explored. Five peptide/nanoparticle complexes were investigated, particles modified with (1) the nuclear localization signal (NLS) from the SV 40 virus; (2) the adenovirus NLS; (3) the adenovirus receptor-mediated endocytosis (RME) peptide; (4) one long peptide containing the adenovirus RME and NLS; and (5) the adenovirus RME and NLS peptides attached to the nanoparticle as separate pieces. Gold nanoparticles were used because they are easy to identify using video-enhanced color differential interference contrast microscopy, and they are excellent scaffolds from which to build multifunctional nuclear targeting vectors. For example, particles modified solely with NLS peptides were not able to target the nucleus of HepG2 cells from outside the plasma membrane, because they either could not enter the cell or were trapped in endosomes. The combination of NLS/RME particles (4) and (5) did reach the nucleus; however, nuclear targeting was more efficient when the two signals were attached to nanoparticles as separate short pieces versus one long peptide. These studies highlight the challenges associated with nuclear targeting and the potential advantages of designing multifunctional nanostructured materials as tools for intracellular diagnostics and therapeutic delivery.  相似文献   
86.
Laser-induced temperature jumps (LITJs) at gold nanoparticle-coated indium tin oxide (ITO) electrodes in contact with electrolyte solutions have been measured using temperature-sensitive redox probes and an infrared charge-coupled device. Upon irradiation with 532 nm light, interfacial temperature changes of ca. 20 degrees C were recorded for particle coverages of ca. 1 x 1010 cm-2. In the presence of a redox molecule, LITJ yields open-circuit photovoltages and photocurrents that are proportional to the number of particles on the surface. When ssDNA was used to chemisorb nanoparticles to the ITO surface, solution concentrations as low as 100 fM of target ssDNA-modified nanoparticles could be detected at the electrode surface.  相似文献   
87.
88.
89.
The possibility of applying post-column reaction and chemiluminescence to determine organic peroxy compounds by RP-HPLC was investigated. Conditions of qualitative and quantitative analyses have been established. The applicability of the method has been demonstrated for a series of compounds representative of the most important groups of peroxy-type compounds, that is, hydroperoxides, dialkyl peroxides, diacyl peroxides, peroxyesters, and peroxyacids.  相似文献   
90.
High-content analysis in preclinical drug discovery   总被引:1,自引:0,他引:1  
High-Content Analysis (HCA) has developed into an established tool and is used in a wide range of academic laboratories and pharmaceutical research groups. HCA is now routinely proving to be effective in providing functionally relevant results. It is essential to select the appropriate HCA application with regard to the targeted compound's cellular function. The cellular impact and compound specificity as revealed by HCA analysis facilitates reaching definitive conclusions at an early stage in the drug discovery process. This technology therefore has the potential to substantially improve the efficiency of pharmaceutical research. Recent advances in fluorescent probes have significantly boosted the success of HCA. Auto-fluorescent proteins which minimally hinder the functioning of the living cell have been playing a decisive role in cell biology research. For companies the severely restricted license conditions regarding auto-fluorescent proteins hamper their general use in pharmaceutical research. This has opened the field for other solutions such as self-labeling protein technology, which could potentially replace the well established methods that utilize auto-fluorescent proteins. In addition, direct labeling techniques have improved considerably and may supersede many of the approaches based on fusion proteins. Following sample preparation, treated cells are imaged and the resulting multiple fluorescent signals are subjected to contextual and statistical analysis. The extraordinary advantage of HCA is that it enables the large-scale and simultaneous quantification and correlation of multiple phenotypic responses and physiological reactions using sophisticated software solutions that permit assay-specific image analysis. Hence, HCA once more has demonstrated its outstanding potential to significantly support establishing effective pharmaceutical research processes in order to both advance research projects and cut costs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号