首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   766篇
  免费   9篇
  国内免费   3篇
化学   424篇
晶体学   2篇
力学   15篇
数学   152篇
物理学   185篇
  2022年   7篇
  2021年   8篇
  2020年   4篇
  2019年   5篇
  2018年   7篇
  2016年   9篇
  2015年   10篇
  2014年   17篇
  2013年   49篇
  2012年   29篇
  2011年   52篇
  2010年   19篇
  2009年   9篇
  2008年   51篇
  2007年   44篇
  2006年   50篇
  2005年   40篇
  2004年   28篇
  2003年   36篇
  2002年   27篇
  2001年   27篇
  2000年   8篇
  1999年   9篇
  1998年   9篇
  1997年   8篇
  1996年   14篇
  1995年   9篇
  1994年   4篇
  1992年   10篇
  1990年   13篇
  1989年   6篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   11篇
  1984年   6篇
  1983年   5篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   6篇
  1978年   11篇
  1977年   11篇
  1976年   9篇
  1975年   6篇
  1974年   5篇
  1973年   7篇
  1972年   5篇
  1971年   7篇
  1970年   8篇
排序方式: 共有778条查询结果,搜索用时 0 毫秒
61.
Copper (Cu2+) and manganese (Mn2+) ions influenced laccase (Lac) and peroxidase production in Pleurotus eryngii, Pleurotus ostreatus, and Pleurotus pulmonarius. In P. eryngii, the optimum Cu2+ concentration for Lac production was 1 mM and for peroxidases 10mM, and Mn2+ concentration of 5mM led to peaks of Lac and peroxidase activity. In P. ostreatus HAI 493, the highest level of Lac activity was at Cu2+ concentrations of 1 and 10 mM and Mn2+ concentration of 1mM, respectively. The absence of Cu2+ and Mn2+ caused the highest levels of peroxidase production. In P. ostreatus HAI 494, the highest level of Lac activity was at a Cu2+ concentration of 5 mM and at Mn2+ concentration of 1 mM, respectively. High levels of peroxidase activity were found in the medium without and with 1mM Cu2+, and at 1 and 5 mM Mn2+, respectively. In P. pulmonarius, the highest Lac activity was found in the presence of 5 mM Cu2+ and 5 mM Mn2+, respectively. The absence of Cu2+ and Mn2+ as well as their presence at a concentration of 1 mM led to the peaks of peroxidase activities.  相似文献   
62.
Sulfur K-edge X-ray absorption spectroscopy of a hydrogen-bonded elongated [Fe4S4]2+ cube is reported. The data show that this synthetic cube is less covalent than a normal compressed cube with no hydrogen bonding. DFT calculations reveal that the observed difference in electronic structure has significant contributions from both the cluster distortion and from hydrogen bonding. The elongated and compressed Fe4S4 structures are found to have different spin topologies (i.e., orientation of the delocalized Fe2S2 subclusters which are antiferromagnetically coupled to each other). It is suggested that the H-bonding interaction with the counterion does not contribute to the cluster elongation. A magneto-structural correlation is developed for the Fe4S4 cube that is used to identify the redox-active Fe2S2 subclusters in active sites of HiPIP and ferredoxin proteins involving these clusters.  相似文献   
63.
S K-edge X-ray absorption spectroscopy data on a series of NiII complexes with thiolate (RS-) and oxidized thiolate (RSO2-) ligands are used to quantify Ni-S bond covalency and its change upon ligand oxidation. Analyses of these results using geometry-optimized density functional theory (DFT) calculations suggest that the Ni-S sigma bonds do not weaken on ligand oxidation. Molecular orbital analysis indicates that these oxidized thiolate ligands use filled high-lying S-O pi* orbitals for strong sigma donation. However, the RSO2- ligands are poor pi donors, as the orbital required for pi interaction is used in the S-O sigma-bond formation. The oxidation of the thiolate reduces the repulsion between electrons in the filled Ni t2 orbital and the thiolate out-of-plane pi-donor orbital leading to shorter Ni-S bond length relative to that of the thiolate donor. The insights obtained from these results are relevant to the active sites of Fe- and Co-type nitrile hydratases (Nhase) that also have oxidized thiolate ligands. DFT calculations on models of the active site indicate that whereas the oxidation of these thiolates has a major effect in the axial ligand-binding affinity of the Fe-type Nhase (where there is both sigma and pi donation from the S ligands), it has only a limited effect on the sixth-ligand-binding affinity of the Co-type Nhases (where there is only sigma donation). These oxidized residues may also play a role in substrate binding and proton shuttling at the active site.  相似文献   
64.
65.
66.
The multicopper oxidases (MCOs) couple the four-electron reduction of dioxygen to water with four one-electron oxidations of various substrates. Extensive spectroscopic studies have identified several intermediates in the MCO catalytic cycle, but they have not been able to settle the structures of three of the intermediates, viz. the native intermediate (NI), the peroxy intermediate (PI), and the peroxy adduct (PA). The suggested structures have been further refined and characterized by quantum mechanical/molecular mechanical (QM/MM) calculations. In this paper, we try to establish a direct link between theory and experiment, by calculating spectroscopic parameters for these intermediates using multireference wave functions from the multistate CASPT2 and MRDDCI2 methods. Thereby, we have been able to reproduce low-spin ground states (S = 0 or S = 1/2) for all the MCO intermediates, as well as a low-lying (approximately 150 cm-1) doublet state and a doublet-quartet energy gap of approximately 780 cm-1 for the NI. Moreover, we reproduce the zero-field splitting (approximately 70 cm-1) of the ground 2E state in a D3 symmetric hydroxy-bridged trinuclear Cu(II) model of the NI and obtain a quantitatively correct quartet-doublet splitting (164 cm-1) for a mu3-oxo-bridged trinuclear Cu(II) cluster. All results support the suggestion that the NI has an O2- atom in the center of the trinuclear cluster, whereas both the PI and PA have an O22- ion in the center of the cluster, in agreement with the QM/MM results and spectroscopic measurements.  相似文献   
67.
Laccase is a multicopper oxidase that contains four Cu ions, one type 1, one type 2, and a coupled binuclear type 3 Cu pair. The type 2 and type 3 centers form a trinuclear Cu cluster that is the active site for O(2) reduction to H(2)O. To examine the reaction between the type 2/type 3 trinuclear cluster and dioxygen, the type 1 Cu was removed and replaced with Hg(2+), producing the T1Hg derivative. When reduced T1Hg laccase is reacted with dioxygen, a peroxide intermediate (P) is formed. The present study examines the kinetics and mechanism of formation and decay of P in T1HgLc. The formation of P was found to be independent of pH and did not involve a kinetic solvent isotope effect, indicating that no proton is involved in the rate-determining step of formation of P. Alternatively, pH and isotope studies on the decay of P revealed that a proton enhances the rate of decay by 10-fold at low pH. This process shows an inverse k(H)/k(D) kinetic solvent isotope effect and involves protonation of a nearby residue that assists in catalysis, rather than direct protonation of the peroxide. Decay of P also involves a significant oxygen isotope effect (k(16)O(2)/k(18)O(2)) of 1.11 +/- 0.05, indicating that reductive cleavage of the O-O bond is the rate-determining step in the decay of P. The activation energy for this process was found to be approximately 9.0 kcal/mol. The exceptionally slow rate of decay of P is explained by the fact that this process involves a 1e(-) reductive cleavage of the O-O bond and there is a large Franck-Condon barrier associated with this process. Alternatively, the 2e(-) reductive cleavage of the O-O bond has a much larger driving force which minimizes this barrier and accelerates the rate of this reaction by approximately 10(7) in the native enzyme. This large difference in rate for the 2e(-) versus 1e(-) process supports a molecular mechanism for multicopper oxidases in which O(2) is reduced to H(2)O in two 2e(-) steps.  相似文献   
68.
69.
In this paper we prove that the language of all primitive (strongly primitive) words over a nontrivial alphabet can be generated by certain types of Marcus contextual grammars.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号