首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17786篇
  免费   3235篇
  国内免费   2387篇
化学   12768篇
晶体学   203篇
力学   1281篇
综合类   159篇
数学   1835篇
物理学   7162篇
  2024年   62篇
  2023年   377篇
  2022年   637篇
  2021年   637篇
  2020年   748篇
  2019年   655篇
  2018年   585篇
  2017年   517篇
  2016年   818篇
  2015年   818篇
  2014年   1005篇
  2013年   1214篇
  2012年   1614篇
  2011年   1650篇
  2010年   1096篇
  2009年   1026篇
  2008年   1185篇
  2007年   1030篇
  2006年   1054篇
  2005年   869篇
  2004年   686篇
  2003年   570篇
  2002年   566篇
  2001年   469篇
  2000年   391篇
  1999年   451篇
  1998年   316篇
  1997年   294篇
  1996年   339篇
  1995年   286篇
  1994年   271篇
  1993年   201篇
  1992年   190篇
  1991年   155篇
  1990年   133篇
  1989年   112篇
  1988年   107篇
  1987年   66篇
  1986年   60篇
  1985年   43篇
  1984年   31篇
  1983年   26篇
  1982年   13篇
  1981年   18篇
  1980年   7篇
  1979年   2篇
  1966年   1篇
  1957年   5篇
  1936年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
941.
In this work,a multi-functional analysis platform by coupling a microfluidic chip to a mass spectrometry(MS) detector was described.We constructed a three-dimensional tumor-endothelial co-culture model for simulating drug resistance during tumor treatment.On this specially designed integrated platform,the first step was to prepare heterogeneous cell-encapsulated alginate microcapsules for threedimensional co-culture,and the second step was to achieve on-line perfusion culture and continuous drug stimulation on chip.It facilitates cell proliferation analysis and the collection of metabolism medium.After micro solid phase extraction column(SPE) pretreatment,subsequent mass spectrometry could detect drug metabolism.The high activity of two kinds of cells(A549 and HUVEC) shows the biocompatibility of the platform.Paclitaxel was used as a model drug,the distinctions of drug absorption between the mono-culture group and co-culture group were clearly observed by electrospray ionization quadrupole time-of-flight mass spectrometry(ESI-Q-TOF MS).Therefore,the integrated platform has shown promise as a high throughput,low cost for cell metabolism research and drug screening processes.  相似文献   
942.
Recently,the development of new electrode materials for lithium-ion batteries(LIBs)has received intensive attention.As an important family of inorganic materials,mixed Mo-based transition metal oxides system is focused as anode materials.In the present work,a simple route has been adopted for the synthesis of layered-flake-likeβ-SnMo04 Nano-assemblies,which have been explored as potential anode materials for the first time in lithium-ion battery(LIB).Overall,the current reports on metal molybdate as anode materials are still rarely.As the anode material for LIBs,it was observed that the fabricated anode is capable of delivering a steady state capacity of almost 400 mAh/g up to 300 cycles under the influence of200 mA/g current density.Further,the anode material is suitable for use as a rated capacity anode because of its high current density tolerance.The present study can be further extended for the generation of a wide variety of other novel materials for multidisciplinary energy related applications.  相似文献   
943.
Cu@Ag/Bi2Te3 nanocomposites were prepared for the first time by ultrasonic dispersion-rapid freezedrying method combined with spark plasma sintering(SPS).By changing the content of Cu@Ag nanoparticle,we could modulate the temperature dependent thermoelectric properties.The highest ZT value can be obtained at 450 K for 1 vol%Cu@Ag/Bi2Te3,which is benefited from the decoupling of electrical and thermal properties.With the increase of electrical conductivity,the absolute value of Seebeck coefficient lifts while the thermal conductivity declines.Meanwhile,the average ZT value between 300 K and 475 K was 0.61 for 1 vol%Cu@Ag/Bi2Te3,which is much higher than that of pristine Bi2 Te3.Therefore,the decoupling effect of Cu@Ag nanoparticles incorporation could be a promising method to broaden the application of Bi2Te3 based thermoelectric materials.  相似文献   
944.
In the modeling of spin-crossing reactions, it has become popular to directly explore the spin-adiabatic surfaces. Specifically, through constructing spin-adiabatic states from a two-state Hamiltonian (with spin-orbit coupling matrix elements) at each geometry, one can readily employ advanced geometry optimization algorithms to acquire a “transition state” structure, where the spin crossing occurs. In this work, we report the implementation of a fully-variational spin-adiabatic approach based on Kohn-Sham density functional theory spin states (sharing the same set of molecular orbitals) and the Breit-Pauli one-electron spin-orbit operator. For three model spin-crossing reactions (predissociation of N2O, singlet-triplet conversion in CH2, and CO addition to Fe(CO)4), the spin-crossing points were obtained. Our results also indicated the Breit-Pauli one-electron spin-orbit coupling can vary significantly along the reaction pathway on the spin-adiabatic energy surface. On the other hand, due to the restriction that low-spin and high-spin states share the same set of molecular orbitals, the acquired spin-adiabatic energy surface shows a cusp (ie, a first-order discontinuity) at the crossing point, which prevents the use of standard geometry optimization algorithms to pinpoint the crossing point. An extension with this restriction removed is being developed to achieve the smoothness of spin-adiabatic surfaces.  相似文献   
945.
近年来,高性能荧光有机电致发光器件(FOLEDs)的开发受到了广泛关注。由于荧光材料仅能利用25%的单重态激子辐射发光,FOLEDs的外量子效率(EQE)理论极限为5%。通过能量转移,充分利用主体分子的单重态与三重态激子敏化荧光客体发光,可以提高激子利用率。目前敏化型FOLEDs(SFOLEDs)的最高EQE已达26.1%。本文详细介绍了SFOLEDs的敏化原理和机制,并根据敏化机制的不同,系统地总结了热活化延迟荧光敏化、激基复合物敏化、三重态湮灭敏化和局域电荷转移杂化激发态(HLCT)敏化等各类SFOLEDs的材料与器件结构特点及其研究进展。最后本综述对该类器件的研究前景进行了展望,期待吸引更多专业的研究人员的研究兴趣,进而推动该领域的发展。  相似文献   
946.
Single‐ligand‐based electronically conductive porous coordination polymers/metal–organic frameworks (EC‐PCPs/MOFs) fail to meet the requirements of numerous electronic applications owing to their limited tunability in terms of both conductivity and topology. In this study, a new 2D π‐conjugated EC‐MOF containing copper units with mixed trigonal ligands was developed: Cu3(HHTP)(THQ) (HHTP=2,3,6,7,10,11‐hexahydrotriphenylene, THQ=tetrahydroxy‐1,4‐quinone). The modulated conductivity (σ≈2.53×10?5 S cm?1 with an activation energy of 0.30 eV) and high porosity (ca. 441.2 m2 g?1) of the Cu3(HHTP)(THQ) semiconductive nanowires provided an appropriate resistance baseline and highly accessible areas for the development of an excellent chemiresistive gas sensor.  相似文献   
947.
It is highly desirable but challenging to optimize the structure of photocatalysts at the atomic scale to facilitate the separation of electron–hole pairs for enhanced performance. Now, a highly efficient photocatalyst is formed by assembling single Pt atoms on a defective TiO2 support (Pt1/def‐TiO2). Apart from being proton reduction sites, single Pt atoms promote the neighboring TiO2 units to generate surface oxygen vacancies and form a Pt‐O‐Ti3+ atomic interface. Experimental results and density functional theory calculations demonstrate that the Pt‐O‐Ti3+ atomic interface effectively facilitates photogenerated electrons to transfer from Ti3+ defective sites to single Pt atoms, thereby enhancing the separation of electron–hole pairs. This unique structure makes Pt1/def‐TiO2 exhibit a record‐level photocatalytic hydrogen production performance with an unexpectedly high turnover frequency of 51423 h?1, exceeding the Pt nanoparticle supported TiO2 catalyst by a factor of 591.  相似文献   
948.
Fluorescent materials exhibiting two‐photon induction (TPI) are used for nonlinear optics, bioimaging, and phototherapy. Polymerizations of molecular chromophores to form π‐conjugated structures were hindered by the lack of long‐range ordering in the structure and strong π–π stacking between the chromophores. Reported here is the rational design of a benzothiadiazole‐based covalent organic framework (COF) for promoting TPI and obtaining efficient two‐photon induced fluorescence emissions. Characterization and spectroscopic data revealed that the enhancement in TPI performance is attributed to the donor‐π‐acceptor‐π‐donor configuration and regular intervals of the chromophores, the large π‐conjugation domain, and the long‐range order of COF crystals. The crystalline structure of TPI‐COF attenuates the π–π stacking interactions between the layers, and overcomes aggregation‐caused emission quenching of the chromophores for improving near‐infrared two‐photon induced fluorescence imaging.  相似文献   
949.
In two‐dimensional (2D) amorphous nanosheets, the electron–phonon coupling triggered by localization of the electronic state as well as multiple‐scattering feature make it exhibit excellent performance in optical science. VS2 nanosheets, especially single‐layer nanosheets with controllable electronic structure and intrinsic optical properties, have rarely been reported owing to the limited preparation methods. Now, a controllable and feasible switching method is used to fabricate 2D amorphous VS2 and partial crystallized 2D VO2(D) nanosheets by altering the pressure and temperature of supercritical CO2 precisely. Thanks to the strong carrier localization and the quantum confinement, the unique 2D amorphous structures exhibit full band absorption, strong photoluminescence, and outstanding photothermal conversion efficiency.  相似文献   
950.
Although the photodimerization of acenaphthylene (ACE) has been known for 100 years, the asymmetric cycloaddition of its 1‐substituted derivatives is unknown. Herein, we report a supramolecular photochirogenic approach in which a homochiral and photoactive Δ/Λ‐[Pd6(RuL3)8]28+ metal–organic cage (Δ/Λ‐MOC‐16) is used as a supramolecular reactor for the enantioselective exited‐state photocatalysis of 1‐Br‐ACE. Owing to preorganization of the substrates by the supramolecular cage, stereochemical control of the triplet state, and nanospace transfer of energy and chirality, the cycloaddition of ACE proceeded with high selectivity for the formation of anti over syn stereoisomers, whereas the regio‐, stereo‐, and enantioselective cycloaddition of unsymmetrical 1‐Br‐ACE showed effective enantiodifferentiation of a pair of anti head‐to‐head stereoisomers. The enzyme‐mimicking photocatalysis was verified by catalytic turnover, rate enhancement, and competing‐guest inhibition experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号