首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   1篇
  国内免费   3篇
化学   7篇
数学   42篇
物理学   8篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2015年   1篇
  2014年   3篇
  2013年   2篇
  2012年   5篇
  2011年   8篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   8篇
  2006年   2篇
  2005年   3篇
  2004年   2篇
  1996年   1篇
  1994年   2篇
  1985年   1篇
排序方式: 共有57条查询结果,搜索用时 0 毫秒
51.
This paper considers a fast diffusion equation with potential ut= um V (x)um+upin Rn×(0,T), where 1 2αm+n< m ≤ 1, p > 1, n ≥ 2, V (x) ~ω|x|2with ω≥ 0 as |x| →∞,and α is the positive root of αm(αm + n 2) ω = 0. The critical Fujita exponent was determined as pc= m +2αm+nin a previous paper of the authors. In the present paper,we establish the second critical exponent to identify the global and non-global solutions in their co-existence parameter region p > pcvia the critical decay rates of the initial data.With u0(x) ~ |x| aas |x| →∞, it is shown that the second critical exponent a =2p m,independent of the potential parameter ω, is quite different from the situation for the critical exponent pc.  相似文献   
52.
By the typical Knoevenagel condensation of Bodipy with aldehyde derivatives, two novel Bodipy derivatives 3 and 6 with symmetric three and six alkyl chains were designed and prepared. The Bodipy derivative 3 with three alkyl chains showed no mesophase but the Bodipy derivative 6 with six alkyl chains possessed the orderly hexagonal columnar mesophase at room temperature. Both samples 3 and 6 exhibited the near-infrared fluorescence with high fluorescence quantum yields and larger Stokes shifts than their Bodipy precursors. Sample 6 was the first near-infrared fluorescent columnar liquid crystal with Bodipy core. This research presented a good strategy on constructing the near-infrared columnar Bodipy liquid crystal.  相似文献   
53.
本文讨论了一类反应扩散方程组齐次第一初边值问题u_t=△u+u~mv~p,v_t=△v+u~qv~n的不同时爆破临界指标问题.在一定初值条件下,本文给出了径向解的四种同时、不同时爆破现象:存在初值使得同时爆破或不同时爆破发生;任何爆破均是同时或不同时的.通过对指标参数的完整分类给出了四种爆破现象的充分必要条件,并且得到了解的全部爆破速率估计.所得结果推广了以前的相应工作.  相似文献   
54.
Geometric singularities, such as cusps and self-intersecting surfaces, are major obstacles to the accuracy, convergence, and stability of the numerical solution of the Poisson-Boltzmann (PB) equation. In earlier work, an interface technique based PB solver was developed using the matched interface and boundary (MIB) method, which explicitly enforces the flux jump condition at the solvent-solute interfaces and leads to highly accurate biomolecular electrostatics in continuum electric environments. However, such a PB solver, denoted as MIBPB-I, cannot maintain the designed second order convergence whenever there are geometric singularities, such as cusps and self-intersecting surfaces. Moreover, the matrix of the MIBPB-I is not optimally symmetrical, resulting in the convergence difficulty. The present work presents a new interface method based PB solver, denoted as MIBPB-II, to address the aforementioned problems. The present MIBPB-II solver is systematical and robust in treating geometric singularities and delivers second order convergence for arbitrarily complex molecular surfaces of proteins. A new procedure is introduced to make the MIBPB-II matrix optimally symmetrical and diagonally dominant. The MIBPB-II solver is extensively validated by the molecular surfaces of few-atom systems and a set of 24 proteins. Converged electrostatic potentials and solvation free energies are obtained at a coarse grid spacing of 0.5 A and are considerably more accurate than those obtained by the PBEQ and the APBS at finer grid spacings.  相似文献   
55.
This paper studies the Cauchy problem for the fast diffusion equation with a localized reaction. We establish the Fujita type theorem to the problem, and then obtain the diffusion-independent blow-up rate for the non-global solutions. Moreover, we prove that the blow-up set for the problem consists of a single point under large initial data. These conclusions are quite different from those for the slow diffusion case.  相似文献   
56.
This paper deals with simultaneous and non-simultaneous blow-up for heat equations coupled via nonlinear boundary fluxes
\frac?u?h = um + vp, \frac?v?h = uq + vn\frac{\partial u}{\partial\eta} = u^{m} + v^{p}, \frac{\partial v}{\partial\eta} = u^{q} + v^{n}  相似文献   
57.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号