首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   192篇
  免费   7篇
  国内免费   5篇
化学   105篇
晶体学   2篇
力学   8篇
数学   57篇
物理学   32篇
  2024年   1篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   5篇
  2019年   9篇
  2018年   3篇
  2017年   6篇
  2016年   6篇
  2015年   7篇
  2014年   8篇
  2013年   18篇
  2012年   11篇
  2011年   11篇
  2010年   9篇
  2009年   5篇
  2008年   16篇
  2007年   14篇
  2006年   11篇
  2005年   5篇
  2004年   10篇
  2003年   6篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有204条查询结果,搜索用时 15 毫秒
51.
We show that an oriented elliptic -manifold admits a universally tight positive contact structure if and only if the corresponding group of deck transformations on (after possibly conjugating by an isometry) preserves the standard contact structure.

We also relate universally tight contact structures on -manifolds covered by to the isomorphism .

The main tool used is equivariant framings of -manifolds.

  相似文献   

52.
A numerical study of fluid flow and heat transfer in a two-dimensional channel under fully developed turbulent conditions is reported. A computer program which is capable of treating both forced and natural convection problems under turbulent conditions has been developed. The code uses the high-Reynolds-number form of the two equation turbulent model(k-?) in which a turbulent kinetic energy near-wall model is incorporated in order to accurately represent the behavior of the flow near the wall, particularly in the viscous sublayer where the turbulent Reynolds number is small. A near-wall temperature model has been developed and incorporated into the energy equation to allow accurate prediction of the temperature distribution near the wall and, therefore, accurate calculation of heat transfer coefficients. The sensitivity of the prediction of flow and heat transfer to variations in the coefficients used in the turbulence model is investigated. The predictions of the model are compared to available experimental and theoretical results; good agreement is obtained. The inclusion of the near-wall temperature model has further improved the predictions of the temperature profile and heat transfer coefficient. The results indicate that the turbulent kinetic energy Prandtl number should be a function of Reynolds number.  相似文献   
53.
Here we have investigated the influence of magnetic field and confinement potential on nonlinear optical property, third harmonic generation (THG) of a parabolically confinement quantum dot in the presence of Rashba spin orbit interaction. We have used density matrix formulation for obtaining optical properties within the effective mass approximation. The results are presented as a function of confining potential, magnetic field, Rashba spin orbit interaction strength and photon energy. Our results indicate that an increase of Rashba spin orbit interaction coefficient produces strong effect on the peak positions of THG. The role of confinement strength and spin orbit interaction strength as control parameters on THG have been demonstrated.  相似文献   
54.
Abstract

Organochalcogenolate-bridged cyclometalated palladium(II) complexes of the formulae, [Pd2(μ-Epy)2(Me2NCH2C6H4-C,N)2] (2) (E = S (2a), Se (2b)), [Pd2(μ-SAr)(μ-Cl)(Me2NCH2C6H4-C,N)2] (3) (Ar = Ph (3a), Mes (Mes = 2,4,6-Me3C6H2) (3b)) and [Pd2(μ-SeAr)2(Me2NCH2C6H4-C,N)2] (4) (Ar = Ph (4a), Mes (4b)), have been synthesized by the reactions of [Pd2(μ-Cl)2(Me2NCH2C6H4-C,N)2] with lead or sodium salts of the chalcogenolate ligand. These complexes have been characterized by elemental analysis, mass spectral data, and NMR (1H and 77Se{1H}) spectroscopy. The molecular structure of 2, determined by single crystal X-ray diffraction analysis, revealed a Epy-bridged head-to-tail arrangement in which the eight-membered “(PdECN)2” ring adopts a distorted twist boat conformation. The Pd····Pd separation in 2a is within the van-der-Waals interaction but in 2b it is too large to support the presence of any metal–metal interaction. The thermal behavior of these complexes has been studied by thermogravimetric analysis.  相似文献   
55.
Inspired by the synthetic and biological potential of organotellurium substances, a series of five- and six-membered ring organotelluranes containing a Te−O bond were synthesized and characterized. Theoretical calculations elucidated the mechanism for the oxidation-cyclization processes involved in the formation of the heterocycles, consistent with chlorine transfer to hydroxy telluride, followed by a cyclization step with simultaneous formation of the new Te−O bond and deprotonation of the OH group. Moreover, theoretical calculations also indicated anti-diastereoisomers to be major products for two chirality center–containing compounds. Antileishmanial assays against Leishmania amazonensis promastigotes disclosed 1,2λ4-oxatellurane LQ50 (IC50=4.1±1.0; SI=12), 1,2λ4-oxatellurolane LQ04 (IC50=7.0±1.3; SI=7) and 1,2λ4-benzoxatellurole LQ56 (IC50=5.7±0.3; SI=6) as more powerful and more selective compounds than the reference, being up to four times more active. A stability study supported by 125Te NMR analyses showed that these heterocycles do not suffer structural modifications in aqueous-organic media or at temperatures up to 65 °C.  相似文献   
56.
Concentrations of pharmaceuticals and personal care products (PPCPs) in natural solids remain largely unknown. Contributing to this, is a lack of methods permitting the simultaneous detection of the diverse, low-level contaminants present in these complex matrices. We have developed a microwave-assisted solvent extraction (MASE)-based method targeting seven diverse PPCPs (caffeine, 17β-estradiol, ibuprofen, ketoprofen, musk ketone, naproxen, and triclosan) and a molecular marker for fecal waste (epicoprostanol). The method consisted of optimizing the following variables: derivatization of the polar target analytes, silica gel open column clean-up, and gas chromatographic-mass spectrometric (GC-MS) analysis of sample extracts for analysis and detection of the compounds noted above. Testing of the method on spiked soil allowed for 89.6 ± 2.89% recovery of three target compounds and 25.0 ± 1.93% recovery of five of the compounds. Although the latter recoveries were low, the precision across all recoveries was high, suggesting good reproducibility in application of the method. Furthermore, we suspect that matrix effects are likely responsible for the lower recoveries. Techniques with the exclusive incorporation of organic solvents were found inapplicable in the study of a pharmaceutical salt, diphenhydramine HCl. Application of the developed method to sediment collected directly downstream of the effluent pipe of a wastewater treatment plant allowed detection of ibuprofen, naproxen, ketoprofen, and epicoprostanol at ng-μg per gram dry weight concentrations. The observation of acidic pharmaceuticals, previously believed to exhibit insignificant sorption to solid matrices, in the tested sediment samples, coupled with application of biosolids for agricultural purposes, demonstrates the need for expanded investigation of PPCP contamination of natural solid matrices.  相似文献   
57.
Recombinant Escherichia coli (E. coli) bacteria expressing green fluorescent protein (GFP) was used as a model system to investigate the antimicrobial activities of Ag nanoparticles (NPs). A convenient in situ method of Ag NP synthesis using sodium borohydride, in the bacterial growth medium, was developed to produce preformed NPs for the study. Fluorescence spectroscopic and microscopic techniques allowed rapid detection of time-dependent changes in bacterial growth as well as fluorescence characteristics in the presence of Ag NPs. In addition, X-ray diffraction, UV-vis spectroscopic, and transmission electron microscopic measurements were carried out to understand the effect of Ag NPs on the bacteria. Our observations indicated that Ag NPs, above a certain concentration, not only were bactericidal but also were found to reduce the sizes of treated bacteria in comparison to untreated ones. Cell lysis of Ag NP-treated bacteria was suggested by the increased GFP fluorescence obtained in the medium. In vitro DNA-Ag NP interaction was detected by spectrophotometric analysis. However, electrophoresis studies indicated no direct effect of Ag NPs on DNA or protein profiles.  相似文献   
58.
The distribution of forces on the surface of complex, deforming geometries is an invaluable output of flow simulations. One particular example of such geometries involves self‐propelled swimmers. Surface forces can provide significant information about the flow field sensed by the swimmers and are difficult to obtain experimentally. At the same time, simulations of flow around complex, deforming shapes can be computationally prohibitive when body‐fitted grids are used. Alternatively, such simulations may use penalization techniques. Penalization methods rely on simple Cartesian grids to discretize the governing equations, which are enhanced by a penalty term to account for the boundary conditions. They have been shown to provide a robust estimation of mean quantities, such as drag and propulsion velocity, but the computation of surface force distribution remains a challenge. We present a method for determining flow‐induced forces on the surface of both rigid and deforming bodies, in simulations using remeshed vortex methods and Brinkman penalization. The pressure field is recovered from the velocity by solving a Poisson's equation using the Green's function approach, augmented with a fast multipole expansion and a tree‐code algorithm. The viscous forces are determined by evaluating the strain‐rate tensor on the surface of deforming bodies, and on a “lifted” surface in simulations involving rigid objects. We present results for benchmark flows demonstrating that we can obtain an accurate distribution of flow‐induced surface forces. The capabilities of our method are demonstrated using simulations of self‐propelled swimmers, where we obtain the pressure and shear distribution on their deforming surfaces.  相似文献   
59.
Magnetite (Fe3O4) nanoparticle was synthesized using a solid state mechanochemical method and used for studying the sorption of uranium(VI) from aqueous solution onto the nanomaterial. The synthesized product is characterized using SEM, XRD and XPS. The particles were found to be largely agglomerated. XPS analysis showed that Fe(II)/Fe(III) ratio of the product is 0.58. Sorption of uranium on the synthesized nanomaterials was studied as a function of various operational parameters such as pH, initial metal ion concentration, ionic strength and contact time. pH studies showed that uranium sorption on magnetite is maximum in neutral solution. Uranium sorption onto magnetite showed two step kinetics, an initial fast sorption completing in 4–6 h followed by a slow uptake extending to several days. XPS analysis of the nanoparticle after sorption of uranium showed presence of the reduced species U(IV) on the nanoparticle surface. Fe(II)/Fe(III) ratio of the nanoparticle after uranium sorption was found to be 0.48, lower than the initial value indicating that some of the ferrous ion might be oxidized in the presence of uranium(VI). Uranium sorption studies were also conducted with effluent from ammonium diuranate precipitation process having a uranium concentration of about 4 ppm. 42% removal was observed during 6 h of equilibration.  相似文献   
60.
In the present study, the carbazole and 2,3,3-triphenylacrylonitrile (TPAN) nanostructures (2-CTPAN and 2,2′-CTPAN) have been designed and synthesized by Pd-catalyzed Sonogashira cross-coupling reaction. CTPAN exhibit aggregation-induced emission enhancement (AIEE) behavior in water with high fluorescence quantum yield. Both the compounds show tunable self-assembly in water as well as in N,N-dimethylformamide (DMF) by extended π–π stacking interactions. CTPAN can be self-assembled into spherical particles in water and the structures of these self-assemblies have been investigated using X-ray diffraction. Interestingly, 2-CTPAN and 2,2′-CTPAN form organogels with a critical gelation concentration (CGC) of 11 and 15 mg mL−1, respectively, in DMF and exhibit acicular and rod shaped morphology, respectively. The single-crystal structure of 2-CTPAN shows that the intermolecular C−H⋅⋅⋅π interactions lock the molecular conformation into a staircase-shaped supramolecular assembly. These AIEE active compounds reveal high water dispersibility, strong yellow fluorescence with high quantum yield, promising photostability and excellent biocompatibility, which make them potential bioimaging agents.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号