首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   297篇
  免费   4篇
  国内免费   2篇
化学   146篇
晶体学   10篇
数学   45篇
物理学   102篇
  2022年   3篇
  2021年   1篇
  2020年   3篇
  2019年   5篇
  2018年   3篇
  2017年   5篇
  2016年   4篇
  2015年   6篇
  2014年   10篇
  2013年   22篇
  2012年   9篇
  2011年   11篇
  2010年   8篇
  2009年   16篇
  2008年   14篇
  2007年   13篇
  2006年   13篇
  2005年   11篇
  2004年   5篇
  2003年   8篇
  2002年   9篇
  2001年   17篇
  2000年   4篇
  1999年   5篇
  1998年   8篇
  1997年   6篇
  1996年   1篇
  1995年   11篇
  1994年   5篇
  1993年   2篇
  1992年   12篇
  1991年   6篇
  1990年   2篇
  1989年   3篇
  1987年   4篇
  1986年   3篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   4篇
  1979年   8篇
  1978年   3篇
  1977年   5篇
  1976年   2篇
  1974年   2篇
  1973年   1篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
排序方式: 共有303条查询结果,搜索用时 31 毫秒
91.
92.
93.
In recent years, polymer nanoparticles have been investigated with great interest due to their potential applications in the fields of electronics, photonics, and biotechnology. Here, we report the spontaneous formation of polymer nanoparticles from a clear solution containing a nonvolatile poor solvent by slow evaporation of a volatile good solvent. During evaporation of the good solvent, the solution gradually turns turbid. After evaporation, polymer nanoparticles of homogeneous shape and size are dispersed in the poor solvent. Homogeneous nucleation and successive growth of polymer particles takes place during the dynamic nonequilibrium process of solvent evaporation. The size of the particles, ranging from tens of nanometers to micrometer scale, depends on both polymer concentration and the solvent mixing ratio. Because of the physical generality of the particle formation mechanism, this procedure is applicable to a wide variety of polymers with suitable combinations of solvents. Here, we also show unique features, surface structures and surface properties of polymer nanoparticles prepared by this method.  相似文献   
94.
95.
96.
97.
The structural phase transition of iodine was observed at about 210 kbar and at room temperature by the high-pressure x-ray diffraction technique using a diamond-anvil cell and a position-sensitive detector. It was found to occur reversibly in both processes of increasing and decreasing pressure.  相似文献   
98.
Broadband dielectric measurements for 65 wt % ethylene glycol oligomer (EGO)-water mixtures with one to six repeat units of EGO molecules were performed in the frequency range of 10 microHz-10 GHz and the temperature range of 128-298 K. In the case of the water-EGO mixtures with one and two repeat units of the EGO molecule (small EGO), the shape of the dielectric loss peak of the primary process is asymmetrical about the logarithm of the frequency of maximum loss above the crossover temperature, T(C). The asymmetric process continues to the alpha process at a low frequency, and an additional beta process appears in the frequency range higher than that of the alpha process below T(C). In contrast, the water-EGO mixtures with three or more repeat units of the EGO molecule (large EGO) show a broad and symmetrical loss peak of the primary process above T(C). The symmetric process continues to the beta process, and an additional alpha process appears in the frequency range lower than that of the beta process below T(C). These different scenarios of the alpha-beta separation related to the shape of the loss peak above T(C) are a result of the difference in the cooperative motion of water and solute molecules. The solute and water molecules move cooperatively in the small EGO-water mixtures above T(C), and this cooperative motion leads to the asymmetric loss peak above T(C) and the alpha process below T(C). For the large EGO-water mixtures, the spatially restricted motion of water confined by solute molecules leads to the symmetric loss peak above T(C) and the beta process below T(C).  相似文献   
99.
The electronic structure and the location of muonium centers (Mu) in single-crystalline ZnO were determined for the first time. Two species of Mu centers with extremely small hyperfine parameters have been observed below 40 K. Both Mu centers have an axial-symmetric hyperfine structure along with a <0001> axis, indicating that they are located at the antibonding (AB(O, parallel )) and bond-center (BC( parallel )) sites. It is inferred from their small ionization energy ( approximately 6 and 50 meV) and hyperfine parameters ( approximately 10(-4) times the vacuum value) that these centers behave as shallow donors, strongly suggesting that hydrogen is one of the primary origins of n type conductivity in as-grown ZnO.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号