首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5212篇
  免费   324篇
  国内免费   326篇
化学   3355篇
晶体学   67篇
力学   246篇
综合类   26篇
数学   532篇
物理学   1636篇
  2025年   9篇
  2024年   49篇
  2023年   123篇
  2022年   186篇
  2021年   220篇
  2020年   212篇
  2019年   184篇
  2018年   142篇
  2017年   116篇
  2016年   205篇
  2015年   214篇
  2014年   257篇
  2013年   286篇
  2012年   349篇
  2011年   392篇
  2010年   242篇
  2009年   237篇
  2008年   283篇
  2007年   259篇
  2006年   235篇
  2005年   201篇
  2004年   168篇
  2003年   153篇
  2002年   128篇
  2001年   109篇
  2000年   90篇
  1999年   114篇
  1998年   102篇
  1997年   90篇
  1996年   90篇
  1995年   81篇
  1994年   57篇
  1993年   35篇
  1992年   40篇
  1991年   34篇
  1990年   25篇
  1989年   19篇
  1988年   22篇
  1987年   19篇
  1986年   13篇
  1985年   10篇
  1984年   15篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1980年   9篇
  1976年   7篇
  1975年   3篇
  1974年   2篇
  1972年   2篇
排序方式: 共有5862条查询结果,搜索用时 15 毫秒
101.
Summary New three CuII-CuII-CuII homotrinuclear complexes have been synthesized, namely [Cu(dmg)2{CuL}2](ClO4)2 [L = 5-nitro-1,10-phenanthroline (5-NO2-phen), 4,4-dimethyl-2,2-bipyridiine (DMbpy), tetramethylenediamine (TMDA) and dimethylglyoximate ion (dmg)2-]. The magnetic susceptibilities of complexes (1) (L = 5-NO2-phen) and (2) (L = DMbpy) were measured in the 4.2–300 K range, giving the parameters,J = -335cm-1 (1) andJ= -327.5cm-1 (2). The results demonstrate a very strong antiferromagnetic exchange interaction between the adjacent copper(II) ions.  相似文献   
102.
The conversion of industrial exhaust gases of nitrogen oxides into high-value products is significantly meaningful for global environment and human health. And green synthesis of amino acids is vital for biomedical research and sustainable development of mankind. Herein, we demonstrate an innovative approach for converting nitric oxide (NO) to a series of α-amino acids (over 13 kinds) through electrosynthesis with α-keto acids over self-standing carbon fiber membrane with CoFe alloy. The essential leucine exhibits a high yield of 115.4 μmol h−1 corresponding a Faradaic efficiency of 32.4 %, and gram yield of products can be obtained within 24 hours in lab as well as an ultra-long stability (>240 h) of the membrane catalyst, which could convert NO into NH2OH rapidly attacking α-keto acid and subsequent hydrogenation to form amino acid. In addition, this method is also suitable for other nitrogen sources including gaseous NO2 or liquidus NO3 and NO2. Therefore, this work not only presents promising prospects for converting nitrogen oxides from exhaust gas and nitrate-laden waste water into high-value products, but also has significant implications for synthetizing amino acids in biomedical and catalytic science.  相似文献   
103.
    
How to transfer industrial exhaust gases of nitrogen oxides into high-values product is significantly important and challenging. Herein, we demonstrate an innovative method for artificial synthesis of essential α-amino acids from nitric oxide (NO) by reacting with α-keto acids through electrocatalytic process with atomically dispersed Fe supported on N-doped carbon matrix (AD-Fe/NC) as the catalyst. A yield of valine with 32.1 μmol mgcat−1 is delivered at −0.6 V vs. reversible hydrogen electrode, corresponding a selectivity of 11.3 %. In situ X-ray absorption fine structure and synchrotron radiation infrared spectroscopy analyses show that NO as nitrogen source converted to hydroxylamine that promptly nucleophilic attacked on the electrophilic carbon center of α-keto acid to form oxime and subsequent reductive hydrogenation occurred on the way to amino acid. Over 6 kinds of α-amino acids have been successfully synthesized and gaseous nitrogen source can be also replaced by liquid nitrogen source (NO3). Our findings not only provide a creative method for converting nitrogen oxides into high-valued products, which is of epoch-making significance towards artificial synthesis of amino acids, but also benefit in deploying near-zero-emission technologies for global environmental and economic development.  相似文献   
104.
    
The inhibition of tyrosinase is considered to be a common therapeutic strategy for some hyperpigmentation disorders. Screening of tyrosinase inhibitors is of great significance to the treatment of pigmentation diseases. In this study, tyrosinase was covalently immobilized on magnetic multi-walled carbon nanotubes for the first time, and the immobilized tyrosinase was applied for ligand fishing of tyrosinase inhibitors from complex medicinal plants. The immobilized tyrosinase was characterized by transmission electron microscopy, atomic force microscopy, Fourier-transform infrared spectroscopy, vibrating sample magnetometry, and thermo-gravimetric analyzer, which indicated that tyrosinase was immobilized onto magnetic multi-walled carbon nanotubes. The immobilized tyrosinase showed better thermal stability and reusability than the free one. The ligand was fished out from Radix Paeoniae Alba and identified as 1,2,3,4,6-pentagalloylglucose by ultra-performance liquid chromatography-quadrupole time-of-flight high-resolution mass spectrometry. 1,2,3,4,6-pentagalloylglucose was found to be a tyrosinase inhibitor with similar half maximal inhibitory concentration values of 57.13 ± 0.91 μM compared to kojic acid (41.96 ± 0.78 μM). This work not only established a new method for screening tyrosinase inhibitors but also holds considerable potential for exploring the new medicinal value of medicinal plants.  相似文献   
105.
    
Fiber lithium-ion batteries represent a promising power strategy for the rising wearable electronics. However, most fiber current collectors are solid with vastly increased weights of inactive materials and sluggish charge transport, thus resulting in low energy densities which have hindered the development of fiber lithium-ion batteries in the past decade. Here, a braided fiber current collector with multiple channels was prepared by multi-axial winding method to not only increase the mass fraction of active materials, but also to promote ion transport along fiber electrodes. In comparison to typical solid copper wires, the braided fiber current collector hosted 139 % graphite with only 1/3 mass. The fiber graphite anode with braided current collector delivered high specific capacity of 170 mAh g−1 based on the overall electrode weight, which was 2 times higher than that of its counterpart solid copper wire. The resulting fiber battery showed high energy density of 62 Wh kg−1.  相似文献   
106.
    
Flexible batteries based on gel electrolytes with high safety are promising power solutions for wearable electronics but suffer from vulnerable electrode-electrolyte interfaces especially upon complex deformations, leading to irreversible capacity loss or even battery collapse. Here, a supramolecular sol-gel transition electrolyte (SGTE) that can dynamically accommodate deformations and repair electrode-electrolyte interfaces through its controllable rewetting at low temperatures is designed. Mediated by the micellization of polypropylene oxide blocks in Pluronic and host-guest interactions between α-cyclodextrin (α-CD) and polyethylene oxide blocks, the high ionic conductivity and compatibility with various salts of SGTE afford resettable electrode-electrolyte interfaces and thus constructions of a series of highly durable, flexible aqueous zinc batteries. The design of this novel gel electrolyte provides new insights for the development of flexible batteries.  相似文献   
107.
To achieve the Fe−N−C materials with both high activity and durability in proton exchange membrane fuel cells, the attack of free radicals on Fe−N4 sites must be overcome. Herein, we report a strategy to effectively eliminate radicals at the source to mitigate the degradation by anchoring CeO2 nanoparticles as radicals scavengers adjacent (Scaad-CeO2) to the Fe−N4 sites. Radicals such as ⋅OH and HO2⋅ that form at Fe−N4 sites can be instantaneously eliminated by adjacent CeO2, which shortens the survival time of radicals and the regional space of their damage. As a result, the CeO2 scavengers in Fe−NC/Scaad-CeO2 achieved ∼80 % elimination of the radicals generated at the Fe−N4 sites. A fuel cell prepared with the Fe−NC/Scaad-CeO2 showed a smaller peak power density decay after 30,000 cycles determined with US DOE PGM-relevant AST, increasing the decay of Fe−NCPhen from 69 % to 28 % decay.  相似文献   
108.
    
ABSTRACT

We demonstrate a spatially and electrically tunable random lasing based on polymer-stabilized blue phase liquid crystal (PS-BPLC)-wedged cell. The spatially tunable random lasers can be obtained from the laser dye-doped PS-BPLC-wedged cell through changing the pump positions, where the emission wavelength of the random laser can be tuned due to the thickness gradient of the wedged cell, which affects the scattering mean free path. Additionally, applying different electric fields can also tune the laser emission wavelength. The changing of refractive index due to the Kerr effect leads to a change in the scattering mean free path, resulting in shift of lasing wavelength. This PS-BPLC-wedged cell device has a great potential in applications of speckle-free imaging, document coding, biomedicine and other photonic devices.  相似文献   
109.
The immunomodulatory function of longan pulp polysaccharide-protein complex (LP3) was investigated in immunosuppressed mice models. Compared with the model control, peroral administration of 100 mgkg?1d?1 LP3 could significantly increase/enhance antibody production against chicken red blood cell (CRBC), concanavalin A (ConA)-induced splenocyte proliferation, macrophage phagocytosis, NK cell cytotoxicity against YAC-1 lymphoma cell, and interferon-gamma (INF-γ) and interleukin-2 (IL-2) secretion in serum (P < 0.05). The immunomodulatory effects, except for those on splenocytes and macrophages (P > 0.05), were also observed in mice administered with 50 or 200 mgkg?1d?1 LP3 (P < 0.05). The beneficial effects of 50-200 mgkg?1d?1 LP3 were comparable to those of 50 mgkg?1d?1 ganoderan. The strong immunomodulatory activity of LP3 confirmed its good potential as an immunotherapeutic adjuvant.  相似文献   
110.
Continuous-time core-level photon-stimulated desorption (PSD) spectroscopy was used to study the soft x-ray-induced reactions of CF(3)Br molecules adsorbed on Si(111)-7×7 near the Si(2p) edge (98-110 eV). The monochromatic synchrotron radiation was employed as a soft x-ray light source in the photon-induced reactions and also as a probe for investigating the produced fluorination states of the bonding surface Si atom in the positive-ion PSD spectroscopy. Several different surface coverages were investigated. The PSD spectra from the low-CF(3)Br-covered surfaces show the production of surface SiF species, while those from the high-CF(3)Br-covered surfaces depict the formation of surface SiF, SiF(2), and SiF(3) species. The photolysis cross section of the submonolayer CF(3)Br-covered surface is determined as ~4.3×10(-18) cm(2). A comparison with the results on CF(3)Cl/Si(111)-7×7 surface is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号