首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3825篇
  免费   210篇
  国内免费   17篇
化学   2964篇
晶体学   30篇
力学   86篇
数学   197篇
物理学   775篇
  2023年   20篇
  2022年   41篇
  2021年   67篇
  2020年   60篇
  2019年   79篇
  2018年   50篇
  2017年   50篇
  2016年   133篇
  2015年   117篇
  2014年   153篇
  2013年   271篇
  2012年   322篇
  2011年   325篇
  2010年   219篇
  2009年   165篇
  2008年   282篇
  2007年   253篇
  2006年   244篇
  2005年   223篇
  2004年   164篇
  2003年   169篇
  2002年   194篇
  2001年   75篇
  2000年   62篇
  1999年   41篇
  1998年   42篇
  1997年   26篇
  1996年   32篇
  1995年   33篇
  1994年   12篇
  1993年   17篇
  1992年   9篇
  1991年   14篇
  1990年   11篇
  1989年   8篇
  1988年   4篇
  1987年   6篇
  1986年   4篇
  1985年   7篇
  1984年   3篇
  1983年   3篇
  1982年   5篇
  1981年   4篇
  1980年   3篇
  1979年   6篇
  1978年   3篇
  1976年   3篇
  1974年   4篇
  1973年   2篇
  1968年   2篇
排序方式: 共有4052条查询结果,搜索用时 31 毫秒
211.
212.
The synthesis, spectroscopic characterisation, conformational switching and fluorescence quenching efficiency of a resorcinarene-based cavitand containing Zn-salen (Zn-Cav) are reported. Synthesis of Zn-Cav was accomplished by the condensation of a quinoxaline derivatised with Zn-salen and a resorcinarene-based cavitand containing three quinoxalines. 1H NMR spectroscopy confirmed that in DMSO, chloroform and acetone Zn-Cav resides in the vase conformation. The molecular geometry of Zn-Cav selectively changes from vase to kite under acidic conditions. Detection by fluorescence quenching of nitro-containing molecules, such as 4-nitrotoluene, 2,4-dinitrotoluene and 2,3-dimethyl-2,3-dinitrobutane was explored by spectrofluorimetry. It was found that the fluorescence of Zn-Cav is efficiently quenched by nitroaromatic compounds.  相似文献   
213.
14-3-3ζ is related to many cancer survival cellular processes. In a previous study, we showed that silencing 14-3-3ζ decreases the resistance of hepatocellular carcinoma (HCC) to chemotherapy. In this study, we investigated whether silencing 14-3-3ζ affects the radioresistance of cancer stem-like cells (CSCs) in HCC. Knockdown of 14-3-3ζ decreased cell viability and the number of spheres by reducing radioresistance in CSCs after γ-irradiation (IR). Furthermore, the levels of pro-apoptotic proteins were upregulated in CSCs via silencing 14-3-3ζ after IR. These results suggest that 14-3-3ζ knockdown enhances radio-induced apoptosis by reducing radioresistance in liver CSCs.  相似文献   
214.
This study was performed to evaluate the contribution of adiponectin to the production of interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), matrix metalloproteinase (MMP)-1 and MMP-13 in human endothelial cells and osteoblasts in arthritic joints. Cultured human umbilical vascular endothelial cells (HUVECs) and osteoblasts were stimulated with adiponectin (1 or 10 μg ml−1) or IL-1β (0.1 ng ml−1) in the presence or absence of hypoxia for 24 h. The protein expression patterns were examined by analyzing culture supernatants using the enzyme-linked immunosorbent assay (ELISA). Adiponectin significantly stimulated the production of VEGF, MMP-1 and MMP-13 in osteoblasts but not in endothelial cells, whereas it significantly stimulated the production of IL-6 and IL-8 in both endothelial cells and osteoblasts. The increase in VEGF production induced by adiponectin was significantly greater than that induced by IL-1β. The production of IL-6 and IL-8 in adiponectin-stimulated endothelial cells was approximately 10-fold higher than that in IL-1β-stimulated endothelial cells; in osteoblasts, adiponectin-induced IL-6 and IL-8 secretion was approximately twofold higher than that induced by IL-1β. In addition, IL-8 production in endothelial cells was approximately sevenfold higher than in osteoblasts. However, IL-6 levels were similar between the two cell types, suggesting that adiponectin may be involved in the production of IL-8 in endothelial cells, which may have an important role in neutrophil recruitment to arthritic joints. Furthermore, the increases in protein expression induced by adiponectin were differentially regulated by hypoxia. In conclusion, adiponectin has a more important role than does IL-1β in the production of mediators that drive synovitis and joint destruction in endothelial cells and osteoblasts at physiological concentrations.  相似文献   
215.
In the present study, carbon-coated lithium iron phosphate (LiFePO4/C) is prepared directly by a polyol-assisted pyro-synthesis performed under reaction times of a few seconds in open-air conditions. The polyol solvent, tetraethylene glycol (TTEG), acts as a low-cost fuel to facilitate combustion and the released exothermic energy promotes the nucleation and growth processes of the olivine nanoparticles. In addition, phosphoric acid (used as the phosphorous source) acts as a catalyst to accelerate polyol carbonization. The structure analysis of the as-prepared LiFePO4/C using X-ray, neutron diffraction and 7Li NMR studies suggested the efficacy of the rapid technique to produce highly crystalline phase-pure olivine nanocrystals. The electron microscopy and particle-size distribution studies revealed that the average particle diameters lie below 100 nm and confirmed the presence of a surface carbon layer of 2–3 nm thickness. The thermal and elemental studies indicated that the carbon content in the sample was approximately 5 %. The prepared LiFePO4/C cathode delivered capacities of 162 mA h g-1 at 0.1 °C rates with impressive capacity retention for extended cycling. The polyol-assisted pyro-synthesis, which evades the use of external energy sources, is not only a straightforward, simple and timely approach but also offers opportunities for large-scale LiFePO4/C production.  相似文献   
216.
A spray‐pyrolysis process is introduced as an effective tool for the preparation of yolk–shell‐structured materials with electrochemical properties suitable for anode materials in Li‐ion batteries (LIBs). Yolk–shell‐structured ZnO–Mn3O4 systems with various molar ratios of the Zn and Mn components are prepared. The yolk–shell‐structured ZnO–Mn3O4 powders with a molar ratio of 1:1 of the Zn and Mn components are shown to have high capacities and good cycling performances.  相似文献   
217.
The ability to engineer and re‐program the surfaces of cells would provide an enabling synthetic biological method for the design of cell‐ and tissue‐based therapies. A new cell surface‐engineering strategy is described that uses lipid‐chemically self‐assembled nanorings (lipid‐CSANs) that can be used for the stable and reversible modification of any cell surface with a molecular reporter or targeting ligand. In the presence of a non‐toxic FDA‐approved drug, the nanorings were quickly disassembled and the cell–cell interactions reversed. Similar to T‐cells genetically engineered to express chimeric antigen receptors (CARS), when activated peripheral blood mononuclear cells (PBMCs) were functionalized with the anti‐EpCAM‐lipid‐CSANs, they were shown to selectively kill antigen‐positive cancer cells. Taken together, these results demonstrate that lipid‐CSANs have the potential to be a rapid, stable, and general method for the reversible engineering of cell surfaces and cell–cell interactions.  相似文献   
218.
Direct evidence for the blue luminescence of gold nanoclusters encapsulated inside hydroxyl‐terminated polyamidoamine (PAMAM) dendrimers was provided by spectroscopic studies as well as by theoretical calculations. Steady‐state and time‐resolved spectroscopic studies showed that the luminescence of the gold nanoclusters consisted largely of two electronic transitions. Theoretical calculations indicate that the two transitions are attributed to the different sizes of the gold nanoclusters (Au8 and Au13). The luminescence of the gold nanoclusters was clearly distinguished from that of the dendrimers.  相似文献   
219.
A systematic study of the diffusion mechanism of CO2 in commercial 13X zeolite beads is presented. In order to gain a complete understanding of the diffusion process of CO2, kinetic measurements with a zero length column (ZLC) system and a volumetric apparatus have been carried out. The ZLC experiments were carried out on a single bead of zeolite 13X at 38 °C at a partial pressure of CO2 of 0.1 bar, conditions representative of post-combustion capture. Experiments with different carrier gases clearly show that the diffusion process is controlled by the transport inside the macropores. Volumetric measurements using a Quantachrome Autosorb system were carried out at different concentrations. These experiments are without a carrier gas and the low pressure measurements show clearly Knudsen diffusion control in both the uptake cell and the bead macropores. At increasing CO2 concentrations the transport mechanism shifts from Knudsen diffusion in the macropores to a completely heat limited process. Both sets of experiments are consistent with independent measurements of bead void fraction and tortuosity and confirm that under the range of conditions that are typical of a carbon capture process the system is controlled by macropore diffusion mechanisms.  相似文献   
220.
Rational engineering and assimilation of diverse chemo‐ and biocatalytic functionalities in a single nanostructure is highly desired for efficient multistep chemical reactions but has so far remained elusive. Here, we design and synthesize multimodal catalytic nanoreactors (MCNRs) based on a mesoporous metal‐organic framework (MOF). The MCNRs consist of customizable metal nanocrystals and stably anchored enzymes in the mesopores, as well as coordinatively unsaturated cationic metal MOF nodes, all within a single nanoreactor space. The highly intimate and diverse catalytic mesoporous microenvironments and facile accessibility to the active site in the MCNR enables the cooperative and synergistic participation from different chemo‐ and biocatalytic components. This was shown by one‐pot multistep cascade reactions involving a heterogeneous catalytic nitroaldol reaction followed by a [Pd/lipase]‐catalyzed chemoenzymatic dynamic kinetic resolution to yield optically pure (>99 % ee) nitroalcohol derivatives in quantitative yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号