首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   77篇
  免费   2篇
  国内免费   1篇
化学   36篇
晶体学   1篇
力学   2篇
数学   16篇
物理学   25篇
  2020年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   3篇
  2010年   4篇
  2009年   2篇
  2008年   4篇
  2007年   3篇
  2006年   8篇
  2005年   6篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1991年   1篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1979年   5篇
  1978年   3篇
  1977年   3篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有80条查询结果,搜索用时 15 毫秒
71.
304L stainless steel specimens were subjected to 168 h of oxidation in dry oxygen at 600°C. The composition and microstructure of the oxide as well as the steel near the steel–oxide interface were investigated using SEM and TEM in conjunction with EDS analysis. It was found that the first oxide layers, referred to as the base oxide, consisted of 50–100 nm-sized corundum-type grains. Each grain contained oxides of chromium, iron plus a small amount of manganese in a solid solution with the chemical formula (Cr,Fe,Mn)2O3. In the oxide regions closest to the steel–oxide interface, the grain center compositions varied laterally from grain to grain, with the cation balance ranging between very chromium-rich (Cr:Fe=4:1) and very iron-rich (Cr:Fe=1:8). Within each oxide grain, the chromium level was generally higher in the center than near the boundary. This was due to the much quicker diffusion of iron (compared to chromium) at and through the oxide grain boundaries than in the bulk of the oxide grains, creating iron enrichment near the oxide grain boundaries. Compositional variation with respect to the distance from the steel–oxide interface was also noted. Chromium was richer in the oxide regions closer to the steel–oxide interface than farther out in the oxide and depleted from the steel regions bordering the steel–oxide interface. Manganese was also depleted in those steel regions although hardly enriched in the oxide just outside the steel–oxide interface. Nickel was less reactive than chromium, iron or manganese and hence was virtually absent from the oxide.  相似文献   
72.
The millimeterwave spectra of F210BOH and F211BOH (difluorohydroxyborane) have been measured in their ground vibrational state. Accurate rotational and centrifugal distortion constants have been determined. The equilibrium geometry and anharmonic force fields have been calculated at the CCSD(T) level of theory. The ab initio centrifugal distortion constants and rotation-vibration interaction constants are compared to the experimental values. Some discrepancies are found and discussed. Particularly, it is explained why the semi-experimental structure is not reliable. The best equilibrium structure is: re(BFcis) = 132.29 pm, re(BFtrans) = 131.29 pm, re(BO) = 134.48 pm, re(OH) = 95.74 pm, ∠e(FBF) = 118.36°, ∠e(FcisBO) = 122.25°, and ∠e(BOH) = 113.14°.  相似文献   
73.
The measurements performed at 4.2 K with a Rayleigh type UHF interferometer at a frequency ω/2π = 36.0 GHz, using circular polarization, have revealed the existence of an anomaly in the dielectric constant of Cd0.17Hg0.83Te (namely, æ ? 175) and demonstrated but a slight dependence of the value upon the magnetic field for h?ωH~EF.  相似文献   
74.
In this paper, we apply the Matteoli-Mansoori empirical formula for the pair correlation function of simple fluids obeying the Lennard-Jones potential to calculate reduced self-diffusion coefficients on the basis of the modified free volume theory. The self-diffusion coefficient thus computed as functions of temperature and density is compared with the molecular dynamics simulation data and the self-diffusion coefficient obtained by the modified free volume theory implemented with the Monte Carlo simulation method for the pair correlation function. We show that the Matteoli-Mansoori empirical formula yields sufficiently accurate self-diffusion coefficients in the supercritical regime, provided that the minimum free volume activating diffusion is estimated with the classical turning point of binary collision at the mean relative kinetic energy 3k(B)T/2, where k(B) is the Boltzmann constant and T is the temperature. In the subcritical regime, the empirical formula yields qualitatively correct, but lower values for the self-diffusion coefficients compared with computer simulation values and those from the modified free volume theory implemented with the Monte Carlo simulations for the pair correlation function. However, with a slightly modified critical free volume, the results can be made quite acceptable.  相似文献   
75.
A set of mutually consistent material functions, i.e., shear viscosity, primary normal stress, and secondary normal stress coefficients, is presented. They were originally derived by means of a dense-simple-fluid kinetic theory. It is shown that in spite of their origin the material functions can account for the shear rate dependences of rheological material functions for some polymer solutions, if the formulas are treated as phenomenological functions of shear rate. It is also shown that the material functions used are in fact a set of corresponding state rheological equations of state to a good accuracy for the materials examined.  相似文献   
76.
The viscosity coefficient obtained in a previous paper of this series is calculated as a function of density by developing the N-particle collision operator into a dynamic cluster expansion. The excess transport coefficient Δη is given in an exponential form, where η0 is the two-body Chapman-Enskog result for the transport coefficient, n is the density, and βl is a density-independent quantity consisting of connected cluster contributions of (l + 2) particles. Therefore, the leading term β1 consists of connected three-body cluster contributions. The excess shear viscosity coefficient is calculated for a monatomic hard-sphere fluid by computing βl up to the three-body contributions and the result is compared with the molecular dynamics result by Ashurst and Hoover and also with the experimental data on Ar at 75°C. In spite of the crudity of the potential model used and the approximations made the agreement is good. The result can be improved if l-body clusters (l 4) are included in the calculation. The thermal conductivity coefficient can be obtained in a similar form by using exactly the same procedure used for the viscosity coefficient.  相似文献   
77.
In the distribution function approach to the conformational and thermodynamic properties of polymeric liquids site-site (pair) distribution functions are essential components of the theory. These site-site pair distribution functions are basically mean fields obeying integral equations. In our recent works, a set of self-consistent field equations has been proposed for site-site pair correlation functions which allow us to study conformational and thermodynamic properties of polymeric liquids. In this article, we present a short review of the theory and its applications to a number of aspects of polymeric liquids we have made until now. We also present a self-consistent version of the polymer reference interaction site model where the integral equations for the intramolecular site-site correlation functions are obtained from the Kirkwood hierarchy on the basis of the present theory. The present theory is shown to predict correctly the scaling properties associated with swollen and collapsed polymers in good and poor solvents, respectively. At finite densities, self-consistent solutions of the intra- and intermolecular equations yield the structures and thermodynamics of polymer melts which are favorably compared with Monte Carlo simulation results. Self-consistent theory results are found to be more accurate than the non-self-consistent approaches that use an ideal Gaussian chain conformation distribution function. © 1995 John Wiley & Sons, Inc.  相似文献   
78.
Electrode structures and photovoltaic properties of porphyrin-sensitized solar cells with TiO2 and Nb-, Ge-, and Zr-added TiO2 composite electrodes were examined to disclose the effects of partial substitution of Ti atom by the other metals in the composite electrodes. The TiO2 and Nb-, Ge-, and Zr-added TiO2 composite electrodes were prepared by sol-gel process using laurylamine hydrochloride as a template for the formation of micellar precursors yielding well-defined mesoporous nanocrystalline structures, as in the cases of the formation of silica and titania tubules and nanoparticles by the templating mechanism. The TiO2 and Nb-, Ge-, and Zr-added TiO2 composite electrodes were characterized by transmission electron microscopy, BET surface area analysis, X-ray diffraction analysis, Raman spectroscopy, and impedance measurements. The TiO2 anatase nanocrystalline structure is retained after doping a small amount (5 mol %) of Nb, Ge, or Zr into the TiO2 structure, suggesting the homogeneous distribution of the doped metals with replacing Ti atom by the doped metal. The power conversion efficiency of the porphyrin-sensitized solar cells increases in the order Zr-added TiO2 (0.8%) < Nb-added TiO2 (1.2%) < TiO2 (2.0%) < Ge-added TiO2 cells (2.4%) under the same conditions. The improvement of cell performance of the Ge-added TiO2 cell results from the negative shift of the conduction band of the Ge-added TiO2 electrode. The Ge-added TiO2 cell exhibited a maximum power conversion efficiency of 3.5% when the porphyrin was adsorbed onto the surface of the Ge-added TiO2 electrode with a thickness of 4 microm in MeOH for 1 h.  相似文献   
79.
Nonequilibrium statistical mechanics via density fluctuation theory predicts relations between the bulk and shear viscosity, thermal conductivity, and self-diffusion coefficient of a fluid. In this Feature Article, we discuss such relations holding for fluids over wide ranges of density and temperature experimentally studied in the laboratory. It is discussed how such relations can be used to successfully compute the density and temperature dependence on the basis of intermolecular interaction potential models with the help of the modified free volume theory and the generic van der Waals equation of state once the parameters in them are determined at a low density or at a subcritical temperature. Although some approximations have been made to derive them, they represent a reliable molecular theory of transport coefficients over the entire density and temperature ranges of fluids--namely, gases and liquids--a theory hitherto unavailable in the kinetic theory of liquids and dense gases.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号