首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   131篇
  免费   5篇
化学   97篇
力学   1篇
数学   19篇
物理学   19篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   5篇
  2019年   3篇
  2018年   2篇
  2017年   4篇
  2016年   4篇
  2015年   3篇
  2014年   7篇
  2013年   12篇
  2012年   7篇
  2011年   11篇
  2010年   7篇
  2009年   12篇
  2008年   14篇
  2007年   9篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1994年   1篇
  1982年   1篇
  1980年   1篇
  1959年   1篇
  1958年   1篇
  1937年   2篇
  1931年   1篇
  1927年   1篇
排序方式: 共有136条查询结果,搜索用时 63 毫秒
131.
The controllability of mild solutions defined on the semi-infinite positive real interval for two classes of first order semilinear functional and neutral functional differential evolution equations with infinite delay is studied in this paper. Our results are obtained using a recent nonlinear alternative due to Avramescu for sum of compact and contraction operators in Fréchet spaces, combined with the semigroup theory.  相似文献   
132.
PDZ (postsynaptic density (PSD95), discs large (Dlg), and zonula occludens (ZO-1)-dependent interactions are widely distributed within different cell types and regulate a variety of cellular processes. To date, some of these interactions have been identified as targets of small molecules or peptides, mainly related to central nervous system disorders and cancer. Recently, the knowledge of PDZ proteins and their interactions has been extended to various cell types of the immune system, suggesting that their targeting by viral pathogens may constitute an immune evasion mechanism that favors viral replication and dissemination. Thus, the pharmacological modulation of these interactions, either with small molecules or peptides, could help in the control of some immune-related diseases. Deeper structural and functional knowledge of this kind of protein–protein interactions, especially in immune cells, will uncover novel pharmacological targets for a diversity of clinical conditions.  相似文献   
133.
Gallium-doped zinc oxide (ZnO:Ga 1, 2, 3, 4 and 5 at%) samples were prepared in powder form by modifying the Pechini method. The formation of zinc gallate (ZnGa2O4) with the spinel crystal structure was observed even in ZnO:Ga 1 at% by X-ray diffraction. The presence of ZnGa2O4 in ZnO:Ga samples was also evidenced by luminescence spectroscopy through its blue emission at 430 nm, assigned to charge transfer between Ga3+ at regular octahedral symmetry and its surrounding O2− ions. The amount of ZnGa2O4 increases as the dopant concentration increases, as observed by the quantitative phase analysis by the Rietveld method.  相似文献   
134.
Microorganisms were used to reduce 4-bromoacetophenone to (S)-4-bromophenylethanol and (R)-4-bromophenylethanol. After a fractional factorial design to identify the important variables for this reaction, Geotrichum candidum provided a 98.9% conversion with >99% ee of the (R)-isomer, while Rhodotorula rubra led to a 97.6% conversion with a 98.8% ee of the S-isomer.  相似文献   
135.
Inspired by biological motor proteins, that efficiently convert chemical fuel to unidirectional motion, there has been considerable interest in developing synthetic analogues. Among the synthetic motors created thus far, DNA motors that undertake discrete steps on RNA tracks have shown the greatest promise. Nonetheless, DNA nanomotors lack intrinsic directionality, are low speed and take a limited number of steps prior to stalling or dissociation. Herein, we report the first example of a highly tunable DNA origami motor that moves linearly over micron distances at an average speed of 40 nm/min. Importantly, nanomotors move unidirectionally without intervention through an external force field or a patterned track. Because DNA origami enables precise testing of nanoscale structure-function relationships, we were able to experimentally study the role of motor shape, chassis flexibility, leg distribution, and total number of legs in tuning performance. An anisotropic rigid chassis coupled with a high density of legs maximizes nanomotor speed and endurance.  相似文献   
136.
Three different dissolved silane molecules adsorbed at a polar ZnO surface (000&1macr;) are studied by means of constant temperature molecular dynamics simulations. The adsorbed single silane molecules exhibit a different behavior depending on the chemical nature of their tail. For octyltrihydroxysilane molecules with their rather unpolar tail an orthogonal orientation at the polar metal oxide surface is statistically favored with all three polar hydroxide groups of the head being in contact with the polar ZnO surface and the unpolar tail remaining in the isopropanol phase. On the contrary, due to their highly polar tail, aminopropyltrihydroxysilane molecules show a more or less parallel orientation at the surface. Apart from some minor fluctuations two hydroxide groups as well as the amino group of the tail are in contact with the surface. The behavior of the thiolpropyltrihydroxysilane molecules is somehow located in between resulting in parallel as well as orthogonal orientations of the molecule at the surface. Though many of the results obtained for single adsorbed silane molecules can also be transferred to adsorbed silane molecules within whole layers a remarkable difference appears: Now even for aminopropyltrihydroxysilane molecules a mixture of parallel and orthogonal alignment of the molecules can be observed whereas some of the octyltrihydroxysilane molecules also show a parallel orientation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号