首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   16篇
化学   139篇
晶体学   5篇
力学   4篇
数学   31篇
物理学   73篇
  2024年   1篇
  2023年   4篇
  2022年   8篇
  2021年   6篇
  2020年   12篇
  2019年   14篇
  2018年   10篇
  2017年   14篇
  2016年   13篇
  2015年   13篇
  2014年   11篇
  2013年   21篇
  2012年   20篇
  2011年   23篇
  2010年   11篇
  2009年   13篇
  2008年   11篇
  2007年   7篇
  2006年   7篇
  2005年   5篇
  2004年   4篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1998年   2篇
  1995年   4篇
  1994年   2篇
  1992年   1篇
  1991年   2篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有252条查询结果,搜索用时 15 毫秒
241.
Hydroxy‐9,10‐anthraquinones resemble anthracycline‐based anticancer drugs. By varying the pH of the solution, the proton dissociation constants of 1,2,5,8‐tetrahydroxy‐9,10‐anthraquinone (THAQ) were determined. Interaction of THAQ with calf thymus DNA (ct DNA) was studied by UV–Vis spectroscopy to determine the overall binding constant and site size of interaction. The binding constant values (~104) for THAQ interacting with ct DNA at different pH were an order less than that known for anthracyclines. From knowledge of the overall binding constants at different pH values and the first pK of THAQ, the contribution of each form (neutral and monoanionic) towards overall binding with ct DNA could be obtained under physiological conditions. Hence, knowing the contributions of the neutral and monoanionic forms, it now becomes possible to know the overall binding constant for an interaction of THAQ with ct DNA at any pH. The calculated parameters help in understanding the role of the negative charge on the monoanionic form during interaction and suggests suitable chemical modifications that could prevent the development of such negative charges. This could lead to an increase in binding of THAQ to ct DNA. The study also helps to recognize the importance of sugar units in anthracycline anticancer drugs in DNA interaction. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
242.
Western blotting is a widely used analytical technique for detection of specific protein(s) in a given sample of tissue/cell homogenate or extract. Both chemiluminescence (CL) and colorimetric detections can be used for imaging Western blots. Colorimetric substrates offer background free, sensitive, and clean imaging results directly on the blotted membrane and provides more accurate profile with respect to prestained marker. However, blots stained with colorimetric substrates cannot be reused since no stripping protocols have been reported for such blots, thus limiting their reuse for detection of another protein. In the present study, for the first time, we report a novel method of stripping Western blots developed with the colorimetric substrate TMB for detection of a low‐abundant protein and reprobing of these blots after stripping for detection of a more abundant protein through CL procedure. The stripping procedure utilizes a stripping buffer consisting of β‐mercaptoethanol, SDS, and Tris‐HCl and a washing buffer consisting of PBS added with 0.1% Tween‐20 involves a series of steps and facilitates accurate detection of the second protein (i.e., more abundant protein) in the stripped blot through CL. The protocol is reproducible and facilitates saving of precious clinical samples, in addition to saving cost and time as compared to the existing procedures.  相似文献   
243.
Molecularly imprinted polymer (MIP) membranes were used to develop highly sensitive chemical sensors for the detection of herbicide 2,4-dichlorophenoxy acetic acid (2,4-d). The 2,4-d imprinted composite MIP membranes were prepared, and the characterization was done by UV-VIS spectrophotometer, Fourier transform infrared spectroscopy, and scanning electron microscopy, and the same were fitted in a new electrochemical sensor model. Membrane electroconductivity measurements were performed by applying a small-amplitude alternating voltage (20 mV) with a varying frequency from 20 Hz to 80 kHz generated by a low-frequency wave form generator. The measured changes in the membrane ionic/electric conductivity as a function of 2,4-d concentration was allowed to evaluate the recognition properties of the prepared membrane. This sensor is useful in detecting 2,4-d herbicide having concentration range 10-3 M to 10-6 M. The cross-selectivity of the sensor, reproducibility of results, and reusability of MIP membrane were examined and found remarkable and recommendable.  相似文献   
244.
A series of zinc phthalocyanine sensitizers ( PcS22 – 24 ) having a pyridine anchoring group are designed and synthesized to investigate the structural dependence on performance in dye‐sensitized solar cells. The pyridine‐anchor zinc phthalocyanine sensitizer PcS23 shows 79 % incident‐photon to current‐conversion efficiency (IPCE) and 6.1 % energy conversion efficiency, which are comparable with similar phthalocyanine dyes having a carboxylic acid anchoring group. Based on DFT calculations, the high IPCE is attributed with the mixture of an excited‐state molecular orbital of the sensitizer and the orbitals of TiO2. Between pyridine and carboxylic acid anchor dyes, opposite trends are observed in the linker‐length dependence of the IPCE. The red‐absorbing PcS23 is applied for co‐sensitization with a carboxyl‐anchor organic dye D131 that has a complementary spectral response. The site‐selective adsorption of PcS23 and D131 on the TiO2 surface results in a panchromatic photocurrent response for the whole visible‐light region of sun light.  相似文献   
245.
Reductive elimination of [R3PPR3]2+, [11(R)]2+, from the highly electrophilic SbIII centres in [(R3P)3Sb]3+, [8(R)]3+, gives SbI containing cations [(R3P)Sb]1+, [9(R)]1+, which assemble into frameworks identified as cyclo-tetra(stibinophosphonium) tetracations, [(R3P)4Sb4]4+, [10(R)]4+. A phosphine catalyzed mechanism is proposed for conversion of fluoroantimony complexes [(R3P)2SbF]2+, [7(R)]2+, to [10(R)]4+, and the characterization of key intermediates is presented. The results constitute evidence of a novel ligand activation pathway for phosphines in the coordination sphere of hard, electron deficient acceptors. Characterization of the associated reactants and products supports earlier, albeit less definitive, detection of analogous phosphine ligand activation in CuIII and TlIII complexes, demonstrating that these prototypical ligands can behave simultaneously as reducing agents and σ donors towards a variety of hard acceptors. The reactivity of the parent cyclo-tetra(stibinophosphonium) tetracation, [10(Me)]4+, is directed by high charge concentration and strong polarization of the P–Sb bonds. The former explains the observed facility for reductive elimination to yield elemental antimony and the latter enabled activation of P–Cl and P–H bonds to give phosphinophosphonium cations, [Me3PPR′2]1+, including the first example of an H-phosphinophosphonium, [(Me3P)P(H)R′]1+, and 2-phosphino-1,3-diphosphonium cations, [(Me3P)2PR′]2+. Exchange of a phosphine ligand in [10(Me)]4+ with [nacnac]1– gives [(Me3P)3Sb4(nacnac)]3+, [15(Me)]3+, and with dmap gives [(Me3P)3Sb4(dmap)]4+, [16]4+. The lability of P–Sb or Sb–Sb interactions in [10(Me)]4+ has also been illustrated by characterization of heteroleptically substituted derivatives featuring PMe3 and PEt3 ligands.  相似文献   
246.
Using ab initio calculations all the components of the magnetic anisotropy in a dinuclear [MnIIICuIICl(5‐Br‐sap)2(MeOH)] single‐molecule magnet (SMM) have been computed. These calculations reveal that apart from the single‐ion anisotropy, the exchange anisotropy also plays a crucial role in determining the sign as well as the magnitude of the cluster anisotropy. Developed magneto‐structural correlations suggest that a large ferromagnetic exchange can in fact reduce the ground‐state anisotropy, which is an integral component in the design of SMMs.  相似文献   
247.
It is of immense interest to exert spatial and temporal control of chemical reactions. It is now demonstrated that irradiation can trigger reactions specifically at the surface of a simple colloidal construct, obtained by adsorbing polyethyleneimine on fluorescent colloidal particles. Exciting the fluorescent dye in the colloid affords photoinduced electron transfer to spatially proximal amine groups on the adsorbed polymer to form free radical ions. It is demonstrated that these can be harnessed to polymerize acrylic acid monomer at the particle surface, or to break up colloidal assemblies by cleaving a cross‐linked polymer mesh. Formation of free radical ions is not a function of the size of the colloid, neither is it restricted to a specific fluorophore. Fluorophores with redox potentials that allow photoinduced electron transfer with amine groups show formation of free radical ions.  相似文献   
248.
During the recycling of exhausted lead-acid battery, large amount of wastewater is discharged, which contains the toxic Pb(II) ions in high concentration. In this study, the granular activated carbon after modification with sulfuric acid has been used to remove the Pb(II) ions from this wastewater. Adsorbents were characterized using Fourier Transform Infrared, Scanning Electron Microscope, and X-Ray Diffraction analyzer. Taguchi orthogonal L16 array (4^3) was used for batch adsorption study with four levels of three factors initial pH, adsorbent dose, and contact time. Optimum level of parameters was fourty + nd pH 4.5, time 240 min, and dose 0.05 g/50 mL using signal-to-noise ratio (larger-the-better response). Analysis of variance technique was used to signify the adsorption experiment model. The effect of parameters on uptake capacity of adsorbent has been evaluated. Maximum adsorbent capacity for Pb(II) uptake from wastewater of battery recycling unit was found 8.19 mg/g after modification with sulfuric acid. To further understand the mechanism of adsorption, isotherm and kinetic studies were carried out. Experimental data were well fitted with Langmuir isotherm model and pseudo-second-order kinetic model. The study suggested that H2SO4 modified granular activated carbon can be potentially used to remove Pb(II) from lead-acid battery recycle wastewater.  相似文献   
249.
The SnO/SnO2 nanocomposites were synthesized using semisolvothermal reaction technique. These nanocomposites were prepared using different combination of solvents viz., ethanol, water, and ethylene glycol at 180 °C for 24 h. The synthesized nanocomposites were analyzed with various characterization techniques. Structural analysis indicates the formation of tetragonal phase of SnO2 for the sample prepared in ethanol, whereas for other solvent combinations, the mixture of SnO and SnO2 having tetragonal crystal structures were observed. The optical study shows enhanced absorbance in the visible region for all the prepared SnO/SnO2 nanocomposites. The observed band gap was found to be in the range of 3.0 to 3.25 eV. Microstructural determinations confirm the formation of nanostructures having spherical as well as rod-like morphology. The size of nanoparticles in ethanol-mediated solvent was found to be in the range of 5 to 7 nm. Thermogravimetric analysis indicate the weight gain around 1.3 wt% confirming the conversion of SnO to SnO2 material. The photocatalytic activity of synthesized nanocomposites was evaluated by following the aqueous methylene blue (MB) degradation. The sample prepared in ethylene glycol-mediated solvent showed highest photoactivity having apparent rate constant (Kapp) 0.62 × 10?2 min?1.  相似文献   
250.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号