首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2052篇
  免费   120篇
  国内免费   14篇
化学   1740篇
晶体学   10篇
力学   27篇
数学   189篇
物理学   220篇
  2024年   2篇
  2023年   36篇
  2022年   108篇
  2021年   96篇
  2020年   75篇
  2019年   78篇
  2018年   52篇
  2017年   43篇
  2016年   116篇
  2015年   102篇
  2014年   78篇
  2013年   132篇
  2012年   168篇
  2011年   190篇
  2010年   113篇
  2009年   84篇
  2008年   108篇
  2007年   107篇
  2006年   98篇
  2005年   85篇
  2004年   64篇
  2003年   57篇
  2002年   44篇
  2001年   11篇
  2000年   13篇
  1999年   8篇
  1998年   9篇
  1997年   4篇
  1996年   8篇
  1995年   5篇
  1994年   5篇
  1993年   3篇
  1992年   5篇
  1991年   6篇
  1990年   5篇
  1989年   9篇
  1988年   7篇
  1987年   2篇
  1986年   3篇
  1985年   8篇
  1984年   8篇
  1983年   7篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1976年   2篇
  1974年   2篇
  1973年   3篇
  1925年   1篇
  1924年   1篇
排序方式: 共有2186条查询结果,搜索用时 15 毫秒
51.
(1) Background: Achillea mellifolium belongs to a highly reputed family of medicinal plants, with plant extract being used as medicine in indigenous system. However, limited data is available regarding the exploitation of the medicinal potential of isolated pure compounds from this family; (2) Methods: A whole plant extract was partitioned into fractions and on the basis of biological activity, an ethyl acetate fraction was selected for isolation of pure compounds. Isolated compounds were characterized using different spectroscopic techniques. The compounds isolated from this study were tested for their medicinal potential using in-vitro enzyme assay, coupled with in-silico studies; (3) Results: Three new acrylic acid derivatives (1–3) have been isolated from the ethyl acetate fraction of Achillea mellifolium. The characterization of these compounds (1–3) was carried out using UV/Vis, FT-IR, 1D and 2D-NMR spectroscopy (1H-NMR, 13C-NMR, HMBC, NOESY) and mass spectrometry. These acrylic acid derivatives were further evaluated for their enzyme inhibition potential against urease from jack bean and α glucosidase from Saccharomyces cerevisiae, using both in-silico and in-vitro approaches. In-vitro studies showed that compound 3 has the highest inhibition against urease enzyme (IC50 =10.46 ± 0.03 μΜ), followed by compound 1 and compound 2 with percent inhibition and IC50 value of 16.87 ± 0.02 c and 13.71 ± 0.07 μΜ, respectively, compared to the standard (thiourea-IC50 = 21.5 ± 0.01 μΜ). The investigated IC50 value of compound 3 against the urease enzyme is two times lower compared to thiourea, suggesting that this compound is twice as active compared to the standard drug. On the other hand, all three compounds (1–3) revealed mild inhibition potential against α-glucosidase. In-silico molecular docking studies, in combination with MD simulations and free energy, calculations were also performed to rationalize their time evolved mode of interaction inside the active pocket. Binding energies were computed using a MMPBSA approach, and the role of individual residues to overall binding of the inhibitors inside the active pockets were also computed; (4) Conclusions: Together, these studies confirm the inhibitory potential of isolated acrylic acid derivatives against both urease and α-glucosidase enzymes; however, their inhibition potential is better for urease enzyme even when compared to the standard.  相似文献   
52.
Orbital connective tissue expansion is a hallmark of Graves’ orbitopathy (GO). In moderate-to-severe active GO, glucocorticoids (GC) are the first line of treatment. Here we show that hydrocortisone (HC), prednisolone (P), methylprednisolone (MP), and dexamethasone (DEX) inhibit the hyaluronan (HA) production of orbital (OF) and dermal (DF) fibroblasts. HA production of GO OFs (n = 4), NON-GO OFs (n = 4) and DFs (n = 4) was measured by ELISA. mRNA expression of enzymes of HA metabolism and fibroblast proliferation was examined by RT-PCR and BrdU incorporation, respectively. After 24 h of GC treatment (1µM) HA production decreased by an average of 67.9 ± 3.11% (p < 0.0001) in all cell cultures. HAS2, HAS3 and HYAL1 expression in OFs also decreased (p = 0.009, p = 0.0005 and p = 0.015, respectively). Ten ng/mL PDGF-BB increased HA production and fibroblast proliferation in all cell lines (p < 0.0001); GC treatment remained effective and reduced HA production under PDGF-BB-stimulated conditions (p < 0.0001). MP and DEX reduced (p < 0.001, p = 0.002, respectively) PDGF-BB-induced HAS2 expression in OFs. MP and DEX treatment decreased PDGF-BB stimulated HAS3 expression (p = 0.035 and p = 0.029, respectively). None of the GCs tested reduced the PDGF-BB stimulated proliferation rate. Our results confirm that GCs directly reduce the HA production of OFs, which may contribute to the beneficial effect of GCs in GO.  相似文献   
53.
This work explores the potential of Rocha do Oeste pear pomace to be used as a sustainable and healthy food ingredient. Moreover, the enrichment with yeast protein extract (YPE) may be useful to design innovative food products. The main goals of this study were to assess pear pomace concerning: (i) chemical composition and antioxidant capacity; (ii) rheology, texture, and microstructure characterization (alone or enriched with YPE), before and after heating. The results showed that pear pomace was a rich source of dietary fibers (74.5% DW), with phenolic compounds (3.9 mg chlorogenic acid equivalents/g dry weight), also presenting antiradical activity (3.90 μmol Trolox equivalents/g DW). Pear pomace showed a shear thinning behavior and a typical soft-gel behavior, which was not affected by YPE enrichment, thus suggesting that YPE did not affect pear pomace technological properties. Thermal treatment also did not alter pear pomace rheological properties. YPE addition induced a decrease in the apparent viscosity and a destabilizing effect, compared to the samples that were subjected to thermal processing. These results highlight the importance of pear pomace and the use of YPE for protein enrichment, opening new opportunities for their exploitation.  相似文献   
54.
Psidium guajava (Guava tree) is one of the most widely known species in the family Myrtaceae. The Guava tree has been reported for its potential antioxidant, anti-inflammatory, antimicrobial, and cytotoxic activities. In the current study, the chemical compositions of the n-hexane extract and the essential oil of P. guajava were investigated using the GC/MS analysis, along with an evaluation of their antioxidant potential, and an investigation into the enzyme inhibition of acetylcholinesterase (AChE), butyrylcholinesterase (BchE), tyrosinase, α-amylase, and α-glucosidase. Moreover, molecular docking of the major identified active sites of the target enzymes were investigated. The chemical characterization of the n-hexane extract and essential oil revealed that squalene (9.76%), α-tocopherol (8.53%), and γ-sitosterol (3.90%) are the major compounds in the n-hexane extract. In contrast, the major constituents of the essential oil are D-limonene (36.68%) and viridiflorol (9.68%). The n-hexane extract showed more antioxidant potential in the cupric reducing antioxidant capacity (CUPRAC), the ferric reducing power (FRAP), and the metal chelating ability (MCA) assays, equivalent to 70.80 ± 1.46 mg TE/g, 26.01 ± 0.97 mg TE/g, and 24.83 ± 0.35 mg EDTAE/g, respectively. In the phosphomolybdenum (PM) assay, the essential oil showed more antioxidant activity equivalent to 2.58 ± 0.14 mmol TE/g. The essential oil demonstrated a potent BChE and tyrosinase inhibitory ability at 6.85 ± 0.03 mg GALAE/g and 61.70 ± 3.21 mg KAE/g, respectively. The α-amylase, and α-glucosidase inhibitory activity of the n-hexane extract and the essential oil varied from 0.52 to 1.49 mmol ACAE/g. Additionally, the molecular docking study revealed that the major compounds achieved acceptable binding scores upon docking with the tested enzymes. Consequently, the P. guajava n-hexane extract and oil can be used as a promising candidate for the development of novel treatment strategies for oxidative stress, neurodegeneration, and diabetes mellitus diseases.  相似文献   
55.
Journal of Thermal Analysis and Calorimetry - In the current work, after generating experimental data points for different volume fraction of nanoparticles ( $$\phi$$ ) and different temperatures,...  相似文献   
56.
Journal of Thermal Analysis and Calorimetry - In this article, the intra-uterine flow with small suspended particles under the impact of heat transfer is investigated. Intra-uterine fluid motion...  相似文献   
57.
Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal forms of human cancer, characterized by unrestrained progression, invasiveness and treatment resistance. To date, there are limited curative options, with surgical resection as the only effective strategy, hence the urgent need to discover novel therapies. A platform of onco-immunology targets is represented by molecules that play a role in the reprogrammed cellular metabolism as one hallmark of cancer. Due to the hypoxic tumor microenvironment (TME), PDA cells display an altered glucose metabolism—resulting in its increased uptake—and a higher glycolytic rate, which leads to lactate accumulation and them acting as fuel for cancer cells. The consequent acidification of the TME results in immunosuppression, which impairs the antitumor immunity. This review analyzes the genetic background and the emerging glycolytic enzymes that are involved in tumor progression, development and metastasis, and how this represents feasible therapeutic targets to counteract PDA. In particular, as the overexpressed or mutated glycolytic enzymes stimulate both humoral and cellular immune responses, we will discuss their possible exploitation as immunological targets in anti-PDA therapeutic strategies.  相似文献   
58.
A family of inherently chiral electroactive selectors based on the 2,2’-biindole atropisomeric scaffold, of easy synthesis and modulable functional properties, is studied in cascade in two enantioselection contexts. They are at first investigated as probes in enantioselective HPLC, studying molecular structure and temperature effects, and achieving very efficient semipreparative enantioseparation. The enantiomers thus obtained, of remarkable chiroptical features (optical rotation as well as circular dichroism), are successfully applied as selectors in chiral voltammetry in different media for discrimination of the enantiomers of chiral electroactive probes, either by conversion into enantiopure electroactive electrode surfaces by electrooligomerization on glassy carbon substrate (the two monomers with shorter alkyl chains), or as chiral additive in achiral ionic liquid (the monomer with longest alkyl chains). Discrimination is conveniently and reproducibly achieved in terms of significant potential differences for the two enantiomers, specularly inverting either probe or selector configuration. In one case successful discrimination is also observed with the two probe enantiomers concurrently present, either as racemate or with enantiomeric excesses, neatly accounted for by the peak current ratios.  相似文献   
59.
The addition of PPh2H, PPhMeH, PPhH2, P(para-Tol)H2, PMesH2 and PH3 to the two-coordinate Ni0 N-heterocyclic carbene species [Ni(NHC)2] (NHC=IiPr2, IMe4, IEt2Me2) affords a series of mononuclear, terminal phosphido nickel complexes. Structural characterisation of nine of these compounds shows that they have unusual trans [H−Ni−PR2] or novel trans [R2P−Ni−PR2] geometries. The bis-phosphido complexes are more accessible when smaller NHCs (IMe4>IEt2Me2>IiPr2) and phosphines are employed. P−P activation of the diphosphines R2P−PR2 (R2=Ph2, PhMe) provides an alternative route to some of the [Ni(NHC)2(PR2)2] complexes. DFT calculations capture these trends with P−H bond activation proceeding from unconventional phosphine adducts in which the H substituent bridges the Ni−P bond. P−P bond activation from [Ni(NHC)2(Ph2P−PPh2)] adducts proceeds with computed barriers below 10 kcal mol−1. The ability of the [Ni(NHC)2] moiety to afford isolable terminal phosphido products reflects the stability of the Ni−NHC bond that prevents ligand dissociation and onward reaction.  相似文献   
60.
Photocatalysis has been known as one of the promising technologies due to its eco-friendly nature. However, the potential application of many photocatalysts is limited owing to their large bandgaps and inefficient use of the solar spectrum. One strategy to overcome this problem is to combine the advantages of heteroatom-containing supports with active metal centers to accurately adjust the structural parameters. Metal nanoparticles (MNPs) and single atom catalysts (SACs) are excellent candidates due to their distinctive coordination environment which enhances photocatalytic activity. Metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and carbon nitride (g-C3N4) have shown great potential as catalyst support for SACs and MNPs. The numerous combinations of organic linkers with various heteroatoms and metal ions provide unique structural characteristics to achieve advanced materials. This review describes the recent advancement of the modified MOFs, COFs and g-C3N4 with SACs and NPs for enhanced photocatalytic applications with emphasis on environmental remediation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号