首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   624篇
  免费   24篇
  国内免费   9篇
化学   474篇
晶体学   3篇
力学   19篇
数学   59篇
物理学   102篇
  2023年   8篇
  2022年   53篇
  2021年   60篇
  2020年   24篇
  2019年   33篇
  2018年   30篇
  2017年   13篇
  2016年   42篇
  2015年   26篇
  2014年   34篇
  2013年   53篇
  2012年   56篇
  2011年   45篇
  2010年   28篇
  2009年   27篇
  2008年   34篇
  2007年   20篇
  2006年   12篇
  2005年   11篇
  2004年   9篇
  2003年   6篇
  2002年   3篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   3篇
  1990年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
排序方式: 共有657条查询结果,搜索用时 15 毫秒
631.
The purpose of the study is to examine whether there is a significant relationship between students’ motivation to succeed in introductory mathematics courses offered by universities in the United Arab Emirates (UAE) as the dependent variable of the research and another five independent variables including cognitive mathematics self-concept, affective mathematics self-concept, extrinsic motivation as expectations of future career and income, students’ age and the number of mathematics courses taken by students. The rationale of the study is based on the significance of mathematics achievements for students and academic institutions in particular, as well as for the society in general. The study is designed based on a quantitative research methodology and a sample of 685 students participated in completing a survey questionnaire. The sample is drawn from students who were registered in different introductory mathematics courses at four academic institutions of higher education in the UAE. The quantitative correlation analysis among students’ motivation, cognitive mathematics self-concept, affective mathematics self-concept, extrinsic motivation, students’ age and the number of mathematics courses taken by students reveals theoretically consistent interrelationships. The quantitative multiple regression analysis indicates that the five independent variables explain 71.3% of the variation in students’ motivation to succeed in introductory mathematics courses.  相似文献   
632.
The ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY2+) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5‐dioxynaphthalene (DNP) units flanking a central BIPY2+ unit in the dumbbell component and encircled by the cyclobis(paraquat‐p‐phenylene) (CBPQT4+) tetracationic cyclophane, has been synthesized employing a threading‐followed‐by‐stoppering approach. Variable‐temperature 1H NMR spectroscopy reveals that the barrier to shuttling of the CBPQT4+ ring over the central BIPY2+ unit is in excess of 17 kcal mol?1 at 343 K. Further information about the nature of the BIPY2+ unit as an electrostatic barrier was gleaned from related supramolecular systems, utilizing two threads composed of either two DNP units flanking a central BIPY2+ moiety or a central DNP unit flanked by a BIPY2+ moiety. The threading and dethreading processes of the CBPQT4+ ring with these compounds, which were investigated by spectrophotometric techniques, reveal that the BIPY2+ unit is responsible for affecting both the thermodynamics and kinetics of pseudorotaxane formation by means of an intramolecular self‐folding (through donor–acceptor interactions with the DNP unit), in addition to Coulombic repulsion. In particular, the free energy barrier to threading (Δ${G{{{\ne}\hfill \atop {\rm f}\hfill}}}The ability to control the kinetic barriers governing the relative motions of the components in mechanically interlocked molecules is important for future applications of these compounds in molecular electronic devices. In this Full Paper, we demonstrate that bipyridinium (BIPY(2+)) dications fulfill the role as effective electrostatic barriers for controlling the shuttling and threading behavior for rotaxanes and pseudorotaxanes in aqueous environments. A degenerate [2]rotaxane, composed of two 1,5-dioxynaphthalene (DNP) units flanking a central BIPY(2+) unit in the dumbbell component and encircled by the cyclobis(paraquat-p-phenylene) (CBPQT(4+)) tetracationic cyclophane, has been synthesized employing a threading-followed-by-stoppering approach. Variable-temperature (1)H?NMR spectroscopy reveals that the barrier to shuttling of the CBPQT(4+) ring over the central BIPY(2+) unit is in excess of 17 kcal mol(-1) at 343 K. Further information about the nature of the BIPY(2+) unit as an electrostatic barrier was gleaned from related supramolecular systems, utilizing two threads composed of either two DNP units flanking a central BIPY(2+) moiety or a central DNP unit flanked by a BIPY(2+) moiety. The threading and dethreading processes of the CBPQT(4+) ring with these compounds, which were investigated by spectrophotometric techniques, reveal that the BIPY(2+) unit is responsible for affecting both the thermodynamics and kinetics of pseudorotaxane formation by means of an intramolecular self-folding (through donor-acceptor interactions with the DNP unit), in addition to Coulombic repulsion. In particular, the free energy barrier to threading (ΔG(f)(++)) of the CBPQT(4+) for the case of the thread composed of a DNP flanked by two BIPY(2+) units was found to be as high as 21.7 kcal mol(-1) at room temperature. These results demonstrate that we can effectively employ the BIPY(2+) unit to serve as electrostatic barriers in water in order to gain control over the motions of the CBPQT(4+) ring in both mechanically interlocked and supramolecular systems.  相似文献   
633.
Detection of sub-ppm acetic acid (CH3COOH) is in demand for environmental gas monitoring. In this article, we propose a CH3COOH gas sensor based on Sn3O4 and reduced graphene oxide (RGO), where the assembly of Sn3O4-RGO nanocomposites is dependent on the synthesis method. Three nanocomposites prepared by three different synthesis methods are investigated. The optimum assembly is by hydrothermal reactions of Sn4+ salts and pre-reduced RGO (designated as RS nanocomposite). Raman spectra verified the fingerprint of RGO in the synthesized RS nanocomposite. The Sn3O4 planes of (111), (210), (130), (13¯2) are observed from the X-ray diffractogram, and its average crystallite size is 3.94 nm. X-ray photoelectron spectroscopy on Sn3d and O1s spectra confirm the stoichiometry of Sn3O4 with Sn:O ratio = 0.76. Sn3O4-RGO-RS exhibits the highest response of 74% and 4% at 2 and 0.3 ppm, respectively. The sensitivity within sub-ppm CH3COOH is 64%/ppm. Its superior sensing performance is owing to the embedded and uniformly wrapped Sn3O4 nanoparticles on RGO sheets. This allows a massive relative change in electron concentration at the Sn3O4-RGO heterojunction during the on/off exposure of CH3COOH. Additionally, the operation is performed at room temperature, possesses good repeatability, and consumes only ~4 µW, and is a step closer to the development of a commercial CH3COOH sensor.  相似文献   
634.
Breynia retusa (Dennst.) Alston (also known as Cup Saucer plant) is a food plant with wide applications in traditional medicine, particularly in Ayurveda. Extracts obtained with four solvents (dichloromethane, methanol, ethyl acetate and water), from three plant parts, (fruit, leaf and bark) were obtained. Extracts were tested for total phenolic, flavonoid content and antioxidant activities using a battery of assays including 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), ferric reducing antioxidant power (FRAP), cupric reducing antioxidant capacity (CUPRAC), total antioxidant capacity (TAC) (phosphomolybdenum) and metal chelating. Enzyme inhibitory effects were investigated using acetylcholinesterase (AChE), butyrylcholinesterase (BChE), tyrosinase, α-amylase and α-glucosidase as target enzymes. Results showed that the methanolic bark extract exhibited significant radical scavenging activity (DPPH: 202.09 ± 0.15; ABTS: 490.12 ± 0.18 mg Trolox equivalent (TE)/g), reducing potential (FRAP: 325.86 ± 4.36: CUPRAC: 661.82 ± 0.40 mg TE/g) and possessed the highest TAC (3.33 ± 0.13 mmol TE/g). The methanolic extracts were subjected to LC-DAD-MSn and NMR analysis. A two-column LC method was developed to separate constituents, allowing to identify and quantify forty-four and fifteen constituents in bark and fruits, respectively. Main compound in bark was epicatechin-3-O-sulphate and isolation of compound was performed to confirm its identity. Bark extract contained catechins, procyanidins, gallic acid derivatives and the sulfur containing spiroketal named breynins. Aerial parts mostly contained flavonoid glycosides. Considering the bioassays, the methanolic bark extract resulted a potent tyrosinase (152.79 ± 0.27 mg kojic acid equivalent/g), α-amylase (0.99 ± 0.01 mmol acarbose equivalent ACAE/g) and α-glucosidase (2.16 ± 0.01 mmol ACAE/g) inhibitor. In conclusion, methanol is able to extract the efficiently the phytoconstituents of B. retusa and the bark is the most valuable source of compounds.  相似文献   
635.
Complexes of VO2+, Mn2+, Co2+, Ni2+, Cu2+, Zn2+, Ru3+ and UO22+ with (3‐(hydroxyimino)butan‐2‐ylidene)isonicotinohydrazide were synthesized and characterized using physical and spectral methods. Analytical data revealed that the complexes formed in 1:1 or 1:2 metal–ligand ratios. Spectral studies showed that the ligand bonded to the metal ion in neutral tridentate, monobasic tridentate or monobasic bidentate fashion through azomethine nitrogen atom, protonated/deprotonated imine oxime group and/or ketonic/enolic carbonyl group. From the electronic spectral data together with magnetic susceptibility values a square planar, tetrahedral or distorted octahedral structure can be proposed for all complexes. Electron spin resonance spectra for Cu2+ complexes ( 2 – 4 ) revealed axial symmetry with g|| > g > ge, indicating distorted octahedral or square planar structures and the unpaired electron exists in a orbital with marked covalent bond feature. The prepared complexes showed good to excellent biological activity, and the most active complexes against Aspergillus niger were 4 and 9 with zone of inhibition of 25 and 23 mm, respectively. Complexes 10 and 11 showed interesting activity against Escherichia coli with zone of inhibition of 44 and 32 mm, respectively.  相似文献   
636.
Layered double hydroxide (LDH)-based photocatalysts have emerged as a very promising candidate to replace TiO2, owing to their unique layered structure, tunable band gaps, low cost, ease of scale-up, and good photocatalytic activity. Bismuth-doped ZnCr-LDH was studied as photocatalyst in the photodegradation of methylene blue (MB). The structure and morphology of ZnCr-LDH and ZnCrBi-LDH were characterized using a different mode of delegated tools, e.g., FTIR, XRD, UV–Vis, FESEM–EDX, and TEM measurements. FESEM and TEM image of the synthesized LDHs showed that the synthesized LDH is smooth overlapping crystals, and they are approximately in hexagonal form. The material was found to be a good photocatalyst for degradation of methylene blue in visible light, and the results showed that the photocatalytic activity of ZnCrBi-LDH sample is higher than of ZnCr-LDH sample. According to the kinetic data, the reaction rate constant of ZnCrBi-LDH is approximately four times higher than the apparent reaction rate constant of ZnCr-LDH. The catalytic activity was retained even after four methylene blue degradation cycles, indicating that the LDH could be an important addition to the field of wastewater treatment.  相似文献   
637.
A bimetallic catalyst (Ni/Cu‐MCM‐41) is prepared via co‐condensation method. The latter is characterized by Fourier transform infrared (FT‐IR), X‐ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X‐ray spectroscopy (EDX), diffuse reflectance spectroscopy (DRS), and nitrogen adsorption–desorption analysis. Catalytic performance of Ni/Cu‐MCM‐41 is probed in N‐alkylation of amines with alcohols through a hydrogen autotransfer process. Noteworthy, this catalytic system appears very efficient for synthesis of a range of secondary and tertiary amines in good to excellent isolated yields. Moreover, the catalyst is successfully recovered and reused four times without notable decrease in its activity.  相似文献   
638.
The N-alkylation of the 3,3′-diaminobenzidine with innocent substituents leads to unusual properties. The emission of the benzidine core can be fine-tuned by subtle modifications, and the N-substitution with benzylic groups results in photoinduced exciplexes with distinct and increased emission. This compound constitutes the first example of intramolecular exciplex containing benzidine unit. We also show that these photoinduced processes could be modulated by proton input, and that the diprotonation of the benzidine core disrupted the intramolecular communication in the excited states with a concomitant inhibition of the ligand-centred fluorescence. Furthermore, upon photo-irradiation at 254 nm, semiquinone imine and quinone diimine systems are produced in CH2Cl2 of which the photolysis generates Cl radicals, which rapidly oxidize the tetraamine compounds.  相似文献   
639.
The mechanochemical degradation of poly (vinyl fluoride) (PVDF) was studied in sodium hydroxide solution (soda) in the presence of various gradients of imposed mechanical deformation. Compact tension (CT) and low-necked tensile specimens were used to study ageing in soda (pH 14) at 90 °C during up to 35 days. This made it possible to impose various strain fields during ageing. An image correlation method was used to estimate the displacement fields at the surface of the specimen during the mechanical tests. PVDF degradation in soda usually results in a reddish brown colouring and is essentially localised in the “fairly deformed zones” (30% < ?1 < 70%). For more important strains (?1 > 70%), no colouration is observed and the degradation is stopped by limitation of the soda diffusion in the material [1] and [2]. In the presence of an imposed strain field, there is a level of mechanochemical degradation “Stress Corrosion Cracking” (SCC) in soda for which the formation of microcracks is observed within a layer of exposed surface of degraded polymer. Cracking always starts at the border of the zone coloured by chemical degradation. The mechanical deformation in this bordering zone is approximately ?1 ≈ 30%. The cracking continues via a discontinuous propagation of propagations and crack arrests usually called “stick-slip”. The fracture surfaces are marked by a succession of distinct coloured striations representing a temporary crack arrests characteristic of discontinuous crack growth. Cracking can stop with the elimination of one of the two combined causes of SCC, mechanical or chemical.  相似文献   
640.
Pollutants such as human pharmaceuticals and synthetic hormones that are not covered by environmental legislation have increasingly become important emerging aquatic contaminants. This paper reports the development of a sensitive and selective multi-residue method for simultaneous determination and quantification of 23 pharmaceuticals and synthetic hormones from different therapeutic classes in water samples. Target pharmaceuticals include anti-diabetic, antihypertensive, hypolipidemic agents, β2-adrenergic receptor agonist, antihistamine, analgesic and sex hormones. The developed method is based on solid phase extraction (SPE) followed by instrumental analysis using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC–ESI-MS/MS) with 30 min total run time. River water samples (150 mL) and (sewage treatment plant) STP effluents (100 mL) adjusted to pH 2, were loaded into MCX (3 cm3, 60 mg) cartridge and eluted with four different reagents for maximum recovery. Quantification was achieved by using eight isotopically labeled internal standards (I.S.) that effectively correct for losses during sample preparation and matrix effects during LC–ESI-MS/MS analysis. Good recoveries higher than 70% were obtained for most of target analytes in all matrices. Method detection limit (MDL) ranged from 0.2 to 281 ng/L. The developed method was applied to determine the levels of target analytes in various samples, including river water and STP effluents. Among the tested emerging pollutants, chlorothiazide was found at the highest level, with concentrations reaching up to 865 ng/L in STP effluent, and 182 ng/L in river water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号