首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4713篇
  免费   108篇
  国内免费   32篇
化学   3121篇
晶体学   22篇
力学   103篇
数学   624篇
物理学   983篇
  2023年   32篇
  2022年   59篇
  2021年   80篇
  2020年   57篇
  2019年   73篇
  2018年   63篇
  2017年   55篇
  2016年   107篇
  2015年   104篇
  2014年   107篇
  2013年   193篇
  2012年   230篇
  2011年   316篇
  2010年   163篇
  2009年   145篇
  2008年   253篇
  2007年   270篇
  2006年   226篇
  2005年   220篇
  2004年   185篇
  2003年   167篇
  2002年   141篇
  2001年   78篇
  2000年   73篇
  1999年   65篇
  1998年   47篇
  1997年   42篇
  1996年   62篇
  1995年   59篇
  1994年   49篇
  1993年   77篇
  1992年   55篇
  1991年   55篇
  1990年   46篇
  1989年   51篇
  1988年   41篇
  1987年   55篇
  1986年   36篇
  1985年   58篇
  1984年   51篇
  1983年   34篇
  1982年   51篇
  1981年   44篇
  1980年   33篇
  1979年   48篇
  1978年   50篇
  1976年   38篇
  1975年   44篇
  1974年   48篇
  1973年   33篇
排序方式: 共有4853条查询结果,搜索用时 15 毫秒
41.
Hyperpolarized xenon associated with ligand derivatized cryptophane-A cages has been developed as a NMR based biosensor. To optimize the detection sensitivity we describe use of xenon exchange between the caged and bulk dissolved xenon as an effective signal amplifier. This approach, somewhat analogous to 'remote detection' described recently, uses the chemical exchange to repeatedly transfer spectroscopic information from caged to bulk xenon, effectively integrating the caged signal. After an optimized integration period, the signal is read out by observation of the bulk magnetization. The spectrum of the caged xenon is reconstructed through use of a variable evolution period before transfer and Fourier analysis of the bulk signal as a function of the evolution time.  相似文献   
42.
43.
We formulate the theory describing the evolution and interactions between optical spatial solitons that propagate in opposite directions. We show that coherent collisions between counterpropagating solitons give rise to a new focusing mechanism resulting from the interference between the beams, and that interactions between such solitons are insensitive to the relative phase between the beams.  相似文献   
44.
The effect of susceptibility differences between fluid and fibers on the properties of DTI fiber phantoms was investigated. Thereto, machine-made, easily producible and inexpensive DTI fiber phantoms were constructed by winding polyamide fibers of 15 microm diameter around a circular acrylic glass spindle. The achieved fractional anisotropy was 0.78+/-0.02. It is shown by phantom measurements and Monte Carlo simulations that the transversal relaxation time T(2) strongly depends on the angle between the fibers and the B(0) field if the susceptibilities of the fibers and fluid are not identical. In the phantoms, the measured T(2) time at 3 T decreased by 60% for fibers running perpendicular to B(0). Monte Carlo simulations confirmed this result and revealed that the exact relaxation time depends strongly on the exact packing of the fibers. In the phantoms, the measured diffusion was independent of fiber orientation. Monte Carlo simulations revealed that the measured diffusion strongly depends on the exact fiber packing and that field strength and -orientation dependencies of measured diffusion may be minimal for hexagonal packing while the diffusion can be underestimated by more than 50% for cubic packing at 3 T. To overcome these effects, the susceptibilities of fibers and fluid were matched using an aqueous sodium chloride solution (83 g NaCl per kilogram of water). This enables an orientation independent and reliable use of DTI phantoms for evaluation purposes.  相似文献   
45.
A new framework is introduced for kinetic simulation of laser–plasma interactions in an inhomogeneous plasma motivated by the goal of performing integrated kinetic simulations of fast-ignition laser fusion. The algorithm addresses the propagation and absorption of an intense electromagnetic wave in an ionized plasma leading to the generation and transport of an energetic electron component. The energetic electrons propagate farther into the plasma to much higher densities where Coulomb collisions become important. The high-density plasma supports an energetic electron current, return currents, self-consistent electric fields associated with maintaining quasi-neutrality, and self-consistent magnetic fields due to the currents. Collisions of the electrons and ions are calculated accurately to track the energetic electrons and model their interactions with the background plasma. Up to a density well above critical density, where the laser electromagnetic field is evanescent, Maxwell’s equations are solved with a conventional particle-based, finite-difference scheme. In the higher-density plasma, Maxwell’s equations are solved using an Ohm’s law neglecting the inertia of the background electrons with the option of omitting the displacement current in Ampere’s law. Particle equations of motion with binary collisions are solved for all electrons and ions throughout the system using weighted particles to resolve the density gradient efficiently. The algorithm is analyzed and demonstrated in simulation examples. The simulation scheme introduced here achieves significantly improved efficiencies.  相似文献   
46.
The brains of Long Evans shaker (les) rats, a model of dysmyelination, and their age- matched controls were studied by ex-vivo q-space diffusion imaging (QSI) and diffusion tensor imaging (DTI). The QSI and DTI indices were computed from the same acquisition. The les and the control brains were studied at different stages of maturation and disease progression. The mean displacement, the probability for zero displacement and kurtosis were computed from QSI data while the fractional anisotropy (FA) and the eigenvalues were computed from DTI. It was found that all QSI indices detect the les pathology, at all stages of maturation, while only some of the DTI indices could detect the les pathology. The QSI mean displacement was larger in the les group as compared with their age-matched controls while the probability for zero displacement and the kurtosis were both lower all indicating higher degree of restriction in the control brains. Since all the DTI eigenvalues were higher in the les brains as compared to controls, the less efficient DTI measure for discerning the les pathology was found to be the FA. Clearly, the most sensitive DTI parameter to the les pathology is λ3, i.e. the minimal diffusivity. Since the QSI and DTI data were obtained from the same acquisition, despite the somewhat higher SNR of the QSI data compared to the DTI data, it seems that the higher diagnostic capacity of the QSI data in this experimental model of dysmyelination, originates mainly from the higher diffusing weighting of the QSI data.  相似文献   
47.
New calculations to over ten million time steps have revealed a more complex diffusive behavior than previously reported of a point particle on a square and triangular lattice randomly occupied by mirror or rotator scatterers. For the square lattice fully occupied by mirrors where extended closed particle orbits occur, anomalous diffusion was still found. However, for a not fully occupied lattice the superdiffusion, first noticed by Owczarek and Prellberg for a particular concentration, obtains for all concentrations. For the square lattice occupied by rotators and the triangular lattice occupied by mirrors or rotators, an absence of diffusion (trapping) was found for all concentrations, except on critical lines, where anomalous diffusion (extended closed orbits) occurs and hyperscaling holds for all closed orbits withuniversal exponentsd f =7/4 and =15/7. Only one point on these critical lines can be related to a corresponding percolation problem. The questions arise therefore whether the other critical points can be mapped onto a new percolation-like problem and of the dynamical significance of hyperscaling.  相似文献   
48.
A simple combinatorial formula is found for the product of two iterated quantum stochastic integrals, and used to find conditions that such an integral represent a unitary-valued or*-algebra homomorphism-valued process.  相似文献   
49.
q-Space diffusion MRI (QSI) provides a means of obtaining microstructural information about porous materials and neuronal tissues from diffusion data. However, the accuracy of this structural information depends on experimental parameters used to collect the MR data. q-Space diffusion MR performed on clinical scanners is generally collected with relatively long diffusion gradient pulses, in which the gradient pulse duration, δ, is comparable to the diffusion time, Δ. In this study, we used phantoms, consisting of ensembles of microtubes, and mathematical models to assess the effect of the ratio of the diffusion time and the duration of the diffusion pulse gradient, i.e., Δ/δ, on the MR signal attenuation vs. q, and on the measured structural information extracted therefrom. We found that for Δ/δ  1, the diffraction pattern obtained from q-space MR data are shallower than when the short gradient pulse (SGP) approximation is satisfied. For long δ the estimated compartment size is, as expected, smaller than the real size. Interestingly, for Δ/δ  1 the diffraction peaks are shifted to even higher q-values, even when δ is kept constant, giving the impression that the restricted compartments are even smaller than they are. When phantoms composed of microtubes of different diameters are used, it is more difficult to estimate the diameter distribution in this regime. Excellent agreement is found between the experimental results and simulations that explicitly account for the use of long duration gradient pulses. Using such experimental data and this mathematical framework, one can estimate the true compartment dimensions when long and finite gradient pulses are used even when Δ/δ  1.  相似文献   
50.
Odd-parity rotating magnetic fields (RMFo) applied to mirror-configuration plasmas have produced average electron energies exceeding 200 eV at line-averaged electron densities of approximately 10(12) cm-3. These plasmas, sustained for over 10(3)tauAlfven, have low Coulomb collisionality, vc* triple bond L/lambdaC approximately 10(-3), where lambdaC is the Coulomb scattering mean free path and L is the plasma's characteristic half length. Divertors allow reduction of the electron-neutral collision frequency to values where the RMFo coupling indicates full penetration of the RMFo to the major axis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号