首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   490篇
  免费   6篇
  国内免费   2篇
化学   279篇
晶体学   5篇
力学   13篇
数学   32篇
物理学   169篇
  2023年   5篇
  2022年   5篇
  2021年   6篇
  2020年   5篇
  2019年   5篇
  2018年   4篇
  2017年   7篇
  2016年   12篇
  2015年   10篇
  2014年   9篇
  2013年   23篇
  2012年   30篇
  2011年   33篇
  2010年   20篇
  2009年   15篇
  2008年   34篇
  2007年   34篇
  2006年   25篇
  2005年   27篇
  2004年   11篇
  2003年   14篇
  2002年   13篇
  2001年   9篇
  2000年   5篇
  1999年   9篇
  1998年   5篇
  1997年   9篇
  1996年   4篇
  1995年   6篇
  1994年   4篇
  1993年   10篇
  1992年   6篇
  1991年   6篇
  1990年   5篇
  1989年   7篇
  1988年   5篇
  1987年   2篇
  1986年   4篇
  1985年   13篇
  1984年   3篇
  1983年   3篇
  1981年   2篇
  1980年   4篇
  1979年   5篇
  1978年   6篇
  1977年   7篇
  1975年   2篇
  1974年   4篇
  1970年   2篇
  1961年   1篇
排序方式: 共有498条查询结果,搜索用时 15 毫秒
91.
This paper delineates how the different counterions affect the physicochemical properties of the aqueous aggregates and thereby the lipase activities at the interface of cationic water-in-oil microemulsions. To this end, we have synthesized a series of cetyltrimethylammonium-based surfactants, 1-14, having aliphatic, aliphatic with aromatic substitution at the alpha position, and aromatic carboxylate anion as the counterion. The physicochemical characterizations of these aqueous aggregates were done by conductometric, tensiometric, fluorometric techniques to determine counterion binding (beta), critical micelle concentration (cmc), and micropolarity at the microenvironment. It has been found that the activity of lipase mainly increases with hydrophobicity (which is directly proportional to the counterion binding (beta) of the surfactant) of the counterion and reaches a maximum when the beta value is around 0.5. Increase in hydrophobicity as well as beta leads to the attachment of more counterions at interface resulting in enhancement of interfacial area. Consequently, the enzyme may attain flexible secondary conformation at the augmented surface area and also allow larger population of substrates and enzyme molecules at the interface leading to the enhancement in lipase activity. After an optimum value of beta, further increase probably produces a steric crowding at the interface, hindering the smooth occupancy of enzyme and the substrate in this region leading to decrease of enzyme activity, while molecular surface area of the counterion did not show any virtual influence on the lipase activity. Thus, the variation in the counterion structure and hydrophobicity plays a crucial role in modulating the lipase activity.  相似文献   
92.
Cyclic oligomers of tetrahydrofuran amino acids, cyclo-(Taa1-Leu-Val)2 (left), cyclo-(Taa2-Leu-Val)2 (middle), and cyclo-(Taa2-Phe-Leu)2 (right), displayed well-defined intramolecularly hydrogen-bonded structures with distorted "beta-beta corner" motifs similar to the tennis ball seam.  相似文献   
93.
LJ Edgar  S Dasgupta  M Nitz 《Organic letters》2012,14(16):4226-4229
Glycosyl 1-phosphates enriched in the α-anomer are obtained without the use of protecting groups in two steps starting from the free hemiacetal. Condensation of free hemiacetals with toluenesulfonylhydrazide yields a range of glycosylsulfonohydrazide donors which can be oxidized using cupric chloride in the presence of phosphoric acid and the coordinating additive 2-methyl-2-oxazoline to give useful yields of the fully deprotected glycosyl 1-phosphates.  相似文献   
94.
Ribonuclease?A (RNase A) serves as a convenient model enzyme in the identification and development of inhibitors of proteins that are members of the ribonuclease superfamily. This is principally because the biological activity of these proteins, such as angiogenin, is linked to their catalytic ribonucleolytic activity. In an attempt to inhibit the biological activity of angiogenin, which involves new blood vessel formation, we employed different dinucleosides with varied non-natural backbones. These compounds were synthesized by coupling aminonucleosides with dicarboxylic acids and amino- and carboxynucleosides with an amino acid. These molecules show competitive inhibition with inhibition constant (K(i)) values of (59±3) and (155±5) μM for RNase A. The compounds were also found to inhibit angiogenin in a competitive fashion with corresponding K(i) values in the micromolar range. The presence of an additional polar group attached to the backbone of dinucleosides was found to be responsible for the tight binding with both proteins. The specificity of different ribonucleolytic subsites were found to be altered because of the incorporation of a non-natural backbone in between the two nucleosidic moieties. In spite of the replacement of the phosphate group by non-natural linkers, these molecules were found to selectively interact with the ribonucleolytic site residues of angiogenin, whereas the cell binding site and nuclear translocation site residues remain unperturbed. Docked conformations of the synthesized compounds with RNase A and angiogenin suggest a binding preference for the thymine-adenine pair over the thymine-thymine pair.  相似文献   
95.
The recent emergence of anion-π interactions has added a new dimension to supramolecular chemistry of anions. Yet, after a decade since its inception, actual mechanisms of anion-π interactions remain highly debated. To elicit a complete and accurate understanding of how different anions interact with π-electron-deficient 1,4,5,8-naphthalenediimides (NDIs) under different conditions, we have extensively studied these interactions using powerful experimental techniques. Herein, we demonstrate that, depending on the electron-donating abilities (Lewis basicity) of anions and electron-accepting abilities (π-acidity) of NDIs, modes of anion-NDI interactions vary from extremely weak non-chromogenic anion-π interactions to chromogenic anion-induced charge-transfer (CT) and electron-transfer (ET) phenomena. In aprotic solvents, electron-donating abilities of anions generally follow their Lewis basicity order, whereas π-acidity of NDIs can be fine-tuned by installing different electron-rich and electron-deficient substituents. While strongly Lewis basic anions (OH(-) and F(-)) undergo thermal ET with most NDIs, generating NDI(?-) radical anions and NDI(2-) dianions in aprotic solvents, weaker Lewis bases (AcO(-), H(2)PO(4)(-), Cl(-), etc.) often require the photoexcitation of moderately π-acidic NDIs to generate the corresponding NDI(?-) radical anions via photoinduced ET (PET). Poorly Lewis basic I(-) does not participate in thermal ET or PET with most NDIs (except with strongly π-acidic core-substituted dicyano-NDI) but forms anion/NDI CT or anion-π complexes. We have looked for experimental evidence that could indicate alternative mechanisms, such as a Meisenheimer complex or CH···anion hydrogen-bond formation, but none was found to support these possibilities.  相似文献   
96.
97.
Ribonuclease A (RNase A) serves as a convenient model enzyme in the identification and development of inhibitors of proteins that are members of the ribonuclease superfamily. This is principally because the biological activity of these proteins, such as angiogenin, is linked to their catalytic ribonucleolytic activity. In an attempt to inhibit the biological activity of angiogenin, which involves new blood vessel formation, we employed different dinucleosides with varied non‐natural backbones. These compounds were synthesized by coupling aminonucleosides with dicarboxylic acids and amino‐ and carboxynucleosides with an amino acid. These molecules show competitive inhibition with inhibition constant (Ki) values of (59±3) and (155±5) μM for RNase A. The compounds were also found to inhibit angiogenin in a competitive fashion with corresponding Ki values in the micromolar range. The presence of an additional polar group attached to the backbone of dinucleosides was found to be responsible for the tight binding with both proteins. The specificity of different ribonucleolytic subsites were found to be altered because of the incorporation of a non‐natural backbone in between the two nucleosidic moieties. In spite of the replacement of the phosphate group by non‐natural linkers, these molecules were found to selectively interact with the ribonucleolytic site residues of angiogenin, whereas the cell binding site and nuclear translocation site residues remain unperturbed. Docked conformations of the synthesized compounds with RNase A and angiogenin suggest a binding preference for the thymine–adenine pair over the thymine–thymine pair.  相似文献   
98.
Aim of the present work is to investigate the reaction–diffusion process of a two species system under laminar flow in a T-shaped microchannel. A zone formed at the interface between the aqueous solutions of these two species is affected by advection and diffusion. Through theoretical analyses and experimental results, the effect of dispersion has been shown to influence this diffusion zone. We have defined a parameter called effective diffusivity, to account for the dispersion effects and observed it to be a function of the channel Peclet number. In the limiting case of low Peclet number, this parameter is constant and turns out to be equal to the molecular diffusivity. We have also related effective diffusivity and the dispersion coefficient through scaling estimates.  相似文献   
99.
Diaquacobinamide (H2O)2Cbi2+ or its conjugate base hydroxyaquacobinamide (OH(H2O)Cbi+)) can bind up to two cyanide ions, making dicyanocobinamide. This transition is accompanied by a significant change in color, previously exploited for cyanide determination. The reagent OH(H2O)Cbi+ is used in excess; when trace amounts of cyanide are added, CN(H2O)Cbi+ should be formed. But the spectral absorption of CN(H2O)Cbi+ is virtually the same as that of OH(H2O)Cbi+. It has been inexplicable how trace amounts of cyanide are sensitively measured by this reaction. It is shown here that even with excess OH(H2O)Cbi+, (CN)2Cbi is formed first due to kinetic reasons; this only slowly forms CN(H2O)Cbi+. This understanding implies that CN(H2O)Cbi+ will itself be a better reagent.  相似文献   
100.
Summary: Corn Cob based Xylan, a natural polysaccharide extracted from agro-waste may be used as a tool to deliver drugs especially to the colon because of their timely retention in the physiological environment of stomach and small intestine and can only be degraded in colon by vast anaerobic microflora like bifidobacterium. The objective of present research study is to incorporate the drug namely 5-aminosalicylic acid (5-ASA) into xylan macromolecular backbone, either by surface adsorption or by intermolecular covalent bond formation so that absorption of drugs is prevented in upper gastrointestinal tract (GIT). To achieve the above objective, xylan prodrug of 5-ASA was synthesized via activation of carboxylic acid with N,N-carbonyldiimidazole. The structure of obtained xylan prodrug was evaluated by means FT-IR spectroscopy. The ester carbonyl absorption band was observed at 1690 cm−1 in addition to the bands originated from 5-ASA and xylan. The resulting prodrug and xylan itself assembled into spherical nanoparticles were analyzed by scanning electron microscopy. The prodrug of 5-ASA was synthesized which might be active against inflammatory bowel diseases, a novel thought towards advanced drug delivery from xylan based nanoparticles will be presented.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号