Reported is a modular one‐step three‐component synthesis of tetrahydroisoquinolines using a Catellani strategy. This process exploits aziridines as the alkylating reagents, through palladium/norbornene cooperative catalysis, to enable a Catellani/Heck/aza‐Michael addition cascade. This mild, chemoselective, and scalable protocol has broad substrate scope (43 examples, up to 90 % yield). The most striking feature of this protocol is the excellent regioselectivity and diastereoselectivity observed for 2‐alkyl‐ and 2‐aryl‐substituted aziridines to access 1,3‐cis‐substituted and 1,4‐cis‐substituted tetrahydroisoquinolines, respectively. Moreover, this is a versatile process with high step and atom economy. 相似文献
The rabies virus is a neurotropic virus that causes fatal diseases in humans and animals. Although studying the interactions between a single rabies virus and the cell membrane is necessary for understanding the pathogenesis, the internalization dynamic mechanism of single rabies virus in living cells remains largely elusive. Here, we utilized a novel force tracing technique based on atomic force microscopy(AFM) to record the process of single viral entry into host cell. We revealed that the force of the rabies virus internalization distributed at (65±25) pN, and the time was identified by two peaks with spacings of (237.2±59.1) and (790.3±134.4) ms with the corresponding speed of 0.12 and 0.04 μm/s, respectively. Our results provide insight into the effects of viral shape during the endocytosis process. This report will be meaningful for understanding the dynamic mechanism of rabies virus early infection. 相似文献
Side-chain engineering has been demonstrated as an effective method for fine-tuning the optical, electrical, and morphological properties of organic semiconductors toward efficient organic solar cells (OSCs). In this work, three isomeric non-fullerene small molecule acceptors (SMAs), named BTP-4F-T2C8, BTP-4F-T2EH and BTP-4F-T3EH, with linear and branched alkyl chains substituted on the α or β positions of thiophene as the side chains, were synthesized and systematically investigated. The results demonstrate that the size and substitution position of alkyl side chains can greatly affect the electronic properties, molecular packing as well as crystallinity of the SMAs. After blending with donor polymer D18-Cl, the prominent device performance of 18.25% was achieved by the BTP-4F-T3EH-based solar cells, which is higher than those of the BTP-4F-T2EH-based (17.41%) and BTP-4F-T2C8-based (15.92%) ones. The enhanced performance of the BTP-4F-T3EH-based devices is attributed to its stronger crystallinity, higher electron mobility, suppressed biomolecular recombination, and the appropriate intermolecular interaction with the donor polymer. This work reveals that the side chain isomerization strategy can be a practical way in tuning the molecular packing and blend morphology for improving the performance of organic solar cells.
Both geometric architecture and electronic configurations of heme proteins contribute to its activity. In this work we designed and synthesized a series of four copper(II) porphyrin complexes ( 4 -, 3 -, 2 - and 1 -Cu) where the molecular conformations are modulated by a pair of stepwise shortened straps on the same porphyrin side (cis-ortho) to give double bow-shaped skeletons. Single crystal structures demonstrate that the straps gradually increase the saddle deformation and the deviation of the metal centers, which is in accordance with two, unusual d-orbital reconstructions of two different ground states, as revealed by 4 K EPR and DFT calculations. In the study of the electrocatalytic hydrogen evolution reaction (HER), 1 -Cu, with the shortest straps, showed the most apparent improvement of activity. Second coordination sphere (SCS) effects created by the double bow-shaped architecture and the strong saddle porphyrin core in 1 -Cu are found to play key roles in proton trapping during the catalytic process. The work contributes a novel strategy to improve the catalytic performance of heme analogs through ligand geometric modulation. 相似文献
Synthesis of the third-order nonlinear materials:bis (1,4-dihydroxynaphthalene) tetrathiafulvalene and bis (1,4-dialkoxylnaphthalene) tetrathiafulvalene has been achieved in four steps, starting from 2,3-dichloro-1,4-naphthaquinone. The materials exhibit larger third-order nonlinear optical susceptibilities χ. 相似文献
Deposition of inorganic-organic nano-hybrid ultrathin films onto mesoporous silicate materials has been proven possible by using layer-by-layer assembly method. In combination with sol-gel method, titania, subsequently dye molecules (or polymer) were successfully fabricated onto the inner wall of SBA-15. Their structures were preliminarily characterized by FTIR and solid-state UV-Vis spectroscopy, thermal analysis, and BET surface area measurements,respectively. 相似文献