全文获取类型
收费全文 | 791850篇 |
免费 | 6647篇 |
国内免费 | 2434篇 |
专业分类
化学 | 385811篇 |
晶体学 | 11294篇 |
力学 | 42218篇 |
综合类 | 20篇 |
数学 | 125498篇 |
物理学 | 236090篇 |
出版年
2021年 | 6535篇 |
2020年 | 7008篇 |
2019年 | 7916篇 |
2018年 | 20011篇 |
2017年 | 20002篇 |
2016年 | 20572篇 |
2015年 | 9279篇 |
2014年 | 14414篇 |
2013年 | 33317篇 |
2012年 | 28698篇 |
2011年 | 39582篇 |
2010年 | 27513篇 |
2009年 | 27927篇 |
2008年 | 34152篇 |
2007年 | 35732篇 |
2006年 | 25895篇 |
2005年 | 24034篇 |
2004年 | 22601篇 |
2003年 | 20840篇 |
2002年 | 19839篇 |
2001年 | 21150篇 |
2000年 | 16227篇 |
1999年 | 12583篇 |
1998年 | 10762篇 |
1997年 | 10499篇 |
1996年 | 9917篇 |
1995年 | 8811篇 |
1994年 | 8721篇 |
1993年 | 8432篇 |
1992年 | 9001篇 |
1991年 | 9556篇 |
1990年 | 9110篇 |
1989年 | 8988篇 |
1988年 | 8606篇 |
1987年 | 8560篇 |
1986年 | 8171篇 |
1985年 | 10404篇 |
1984年 | 10823篇 |
1983年 | 9056篇 |
1982年 | 9349篇 |
1981年 | 8771篇 |
1980年 | 8467篇 |
1979年 | 9078篇 |
1978年 | 9308篇 |
1977年 | 9133篇 |
1976年 | 9056篇 |
1975年 | 8688篇 |
1974年 | 8520篇 |
1973年 | 8832篇 |
1972年 | 6338篇 |
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
121.
S. Mohri D. Amutha Rani Y. Yamamoto Y. Tsujita H. Yoshimizu 《Journal of Polymer Science.Polymer Physics》2004,42(2):238-245
Syndiotactic polystyrene (sPS) has various crystalline forms such as α, β, γ, and δ forms, and a mesophase depending on the preparation method. In this study, we focused on the mesophase with the molecular cavity of sPS, which is obtained by step‐wise extraction of the guest molecules from the sPS δ form. To prepare the mesophase containing different shapes and sizes of the cavity, two kinds of the sPS δ form membrane cast from either toluene or chloroform solution were first prepared and then the guest molecules were removed by a step‐wise extraction method using acetone and methanol. We could succeed in the preparation of two kinds of mesophase with different shapes and sizes of the molecular cavity. Either toluene or chloroform vapor sorption to the sPS mesophase membranes was examined at 25 °C. Sorption analysis indicates that the mesophase with large molecular cavities can mainly sorb large molecules; on the other hand, the mesophase with small cavities can sorb only the small molecules, and is unable to sorb a large amount of large molecule because the cavity was too small to sorb the large molecules. Therefore, the sPS mesophase membrane has sorption selectivity based on the size of the molecular cavity. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 238–245, 2004 相似文献
122.
K. Sakurai Y. Kondo K. Miyazaki T. Okamoto S. Irie T. Sasaki 《Journal of Polymer Science.Polymer Physics》2004,42(13):2595-2603
Aiming to develop a high‐performance fiber‐reinforced rubber from styrene–butadiene rubber (SBR), we applied a special technique using electron‐beam (EB)‐irradiation‐induced graft polymerization to ultrahigh‐molecular‐weight‐polyethylene (UHMWPE) fibers. The molecular interaction between the grafted UHMWPE fibers and an SBR matrix was studied through the evaluation of the adhesive behavior of the fibers in the SBR matrix. Although UHMWPE was chemically inert, two monomers, styrene and N‐vinyl formamide (NVF), were examined for graft polymerization onto the UHMWPE fiber surface. Styrene was not effective, but NVF was graft‐polymerized onto the UHMWPE fibers with this special method. A methanol/water mixture and dioxane were used as solvents for NVF, and the effects of the solvents on the grafting percentage of NVF were also examined. The methanol/water mixture was more effective. A grafting percentage of 16.4% was the highest obtained. This improved the adhesive force threefold with respect to that of untreated UHMWPE fibers. These results demonstrated that EB irradiation enabled graft polymerization to occur even on the inert surface of UHMWPE fibers. However, the mechanical properties of the fibers could be compromised according to the dose of EB irradiation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2595–2603, 2004 相似文献
123.
Tae Young Kim Dong Myung Kim Won Jung Kim Tae Hee Lee Kwang S. Suh 《Journal of Polymer Science.Polymer Physics》2004,42(15):2813-2820
The effect of the triblock copolymer poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) on the formation of the space charge of immiscible low‐density polyethylene (LDPE)/polystyrene (PS) blends was investigated. Blends of 70/30 (wt %) LDPE/PS were prepared through melt blending in an internal mixer at a blend temperature of 220 °C. The amount of charge that accumulated in the 70% LDPE/30% PS blends decreased when the SEBS content increased up to 10 wt %. For compatibilized and uncompatibilized blends, no significant change in the degree of crystallinity of LDPE in the blends was observed, and so the effect of crystallization on the space charge distribution could be excluded. Morphological observations showed that the addition of SEBS resulted in a domain size reduction of the dispersed PS phase and better interfacial adhesion between the LDPE and PS phases. The location of SEBS at a domain interface enabled charges to migrate from one phase to the other via the domain interface and, therefore, resulted in a significant decrease in the amount of space charge for the LDPE/PS blends with SEBS. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2813–2820, 2004 相似文献
124.
L. A. Utracki 《Journal of Polymer Science.Polymer Physics》2004,42(15):2909-2915
The Simha and Somcynsky (S–S) statistical thermodynamics theory was used to compute the solubility parameters as a function of temperature and pressure [δ = δ(T, P)], for a series of polymer melts. The characteristic scaling parameters required for this task, P*, T*, and V*, were extracted from the pressure–temperature–volume (PVT) data. To determine the potential polymer–polymer miscibility, the dependence of δ versus T (at ambient pressure) was computed for 17 polymers. Close proximity of the δ versus T curves for four miscible polymer pairs: PPE/PS, PS/PVME, and PC/PMMA signaled the usefulness of this approach. It is noteworthy, that the tabulated solubility parameters (derived from the solution data under ambient conditions) propounded the immiscibility of the PVC/PVAc pair. The computed values of δ also suggested miscibility for polymer pairs of unknown miscibility, namely PPE/PVC, PPE/PVAc, and PET/PSF. In recognizing the limitations of the solubility parameter approach (the omission of several thermodynamic contributions), these preliminary results are auspicious because they indicate a new route for estimating the miscibility of any polymeric material at a given temperature and pressure. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2909–2915, 2004 相似文献
125.
The structure, morphology, and isothermal and nonisothermal crystallization of isotactic polypropylene/low‐molecular‐mass hydrocarbon resin blends (iPP/HR) (up to 20% in weight of HR) have been studied, using optical and electron microscopy, wide‐ and small‐angle X‐ray and differential scanning calorimetry. New structures and morphologies can be activated, using appropriate preparation and crystallization conditions and blend composition. For every composition and crystallization condition, iPP crystallizes in α‐form, with a spherulitic morphology. The size of iPP spherulites increases with resin content, whereas the long period decreases. In the range of crystallization temperatures investigated, HR modifies the birefringence of iPP spherulites, favoring the formation of radial lamellae and changing the ratio between tangential and radial lamellae. Spherulitic radial growth rates, overall crystallization rates, and melting temperatures are strongly affected by resin, monotonically decreasing with resin content. This confirms miscibility in the melt between the two components of the blends. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3368–3379, 2004 相似文献
126.
Beeranahally H Doreswamy Madegowda Mahendra Hirihally C Devarajegowda Venkatesh B Devaru Sridhar M Anandalwar Javaregowda S Prasad 《Analytical sciences》2004,20(2):407-408
The title compound was extracted from a natural product and its structure was characterized by an X-ray diffraction method. It crystallizes in the tetragonal space group P41 with cell parameters a = 15.832(10)A, c = 11.622(10)A, Z = 4; the final residual factor is R1 = 0.0769. The structure has both intra and intermolecular hydrogen bonds. 相似文献
127.
A sequential injection methodology for the spectrophotometric determination of calcium, magnesium and alkalinity in water samples is proposed. A single manifold is used for the determination of the three analytes, and the same protocol sequence allows the sequential determination of calcium and magnesium (the sum corresponds to the water hardness). The determination of both metals is based on their reaction with cresolphtalein complexone; mutual interference is minimized by using 8-hydroxyquinoline for the determination of calcium and ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) for the determination of magnesium. Alkalinity determination is based on a reaction with acetic acid, and corresponding color change of Bromcresol Green. Working ranges of 0.5 - 5 mg dm(-3) for Ca, 0.5 - 10 mg dm(-3) for Mg, and 10 - 100 mg HCO3- dm(-3), for alkalinity have been achieved. The results for water samples were comparable to those of the reference methods and to a certified reference water sample. RSDs lower than 5% were obtained, a low reagent consumption and a reduced volume of effluent have been accomplished. The determination rate for calcium and magnesium is 80 h(-1), corresponding to 40 h(-1) per element, while 65 determinations of alkalinity per hour could be carried out. 相似文献
128.
A. Languasco 《Monatshefte für Mathematik》2004,29(3):147-169
Denote by E[X,X+H] the set of even integers in [X,X+H] that are not a sum of two primes (i.e. that are not Goldbach numbers). Here we prove that there exists a (small) positive constant H 3 X [7/24]+7dH\ge X^{\,{7\over24}+7\delta}
we have
|E(X,H) | << H1-d/600\vert E(X,H) \vert \ll H^{1-\delta/600}
. 相似文献
129.
130.
Using the result by D. Gessler, we show that any invariant variational bivector (resp., variational 2-form) on an evolution equation with nondegenerate right-hand side is Hamiltonian (resp., symplectic). 相似文献