首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3885篇
  免费   208篇
  国内免费   15篇
化学   2925篇
晶体学   21篇
力学   75篇
数学   412篇
物理学   675篇
  2023年   46篇
  2022年   48篇
  2021年   73篇
  2020年   123篇
  2019年   112篇
  2018年   87篇
  2017年   53篇
  2016年   134篇
  2015年   95篇
  2014年   121篇
  2013年   197篇
  2012年   288篇
  2011年   356篇
  2010年   151篇
  2009年   127篇
  2008年   224篇
  2007年   224篇
  2006年   221篇
  2005年   164篇
  2004年   138篇
  2003年   111篇
  2002年   107篇
  2001年   54篇
  2000年   62篇
  1999年   27篇
  1998年   39篇
  1997年   36篇
  1996年   33篇
  1995年   31篇
  1994年   39篇
  1993年   58篇
  1992年   53篇
  1991年   38篇
  1990年   31篇
  1989年   32篇
  1988年   29篇
  1987年   28篇
  1986年   22篇
  1985年   44篇
  1984年   35篇
  1983年   29篇
  1982年   22篇
  1981年   15篇
  1980年   12篇
  1978年   15篇
  1977年   13篇
  1976年   14篇
  1975年   13篇
  1973年   11篇
  1966年   11篇
排序方式: 共有4108条查询结果,搜索用时 31 毫秒
101.
Synchrotron-based high-resolution photoemission and first-principles density-functional slab calculations were used to study the interaction of gold with titania and the chemistry of SO(2) on Au/TiO(2)(110) surfaces. The deposition of Au nanoparticles on TiO(2)(110) produces a system with an extraordinary ability to adsorb and dissociate SO(2). In this respect, Au/TiO(2) is much more chemically active than metallic gold or stoichiometric titania. On Au(111) and rough polycrystalline surfaces of gold, SO(2) bonds weakly and desorbs intact at temperatures below 200 K. For the adsorption of SO(2) on TiO(2)(110) at 300 K, SO(4) is the only product (SO(2) + O(oxide) --> SO(4,ads)). In contrast, Au/TiO(2)(110) surfaces (theta;(Au) < or = 0.5 ML) fully dissociate the SO(2) molecule under identical reaction conditions. Interactions with titania electronically perturb gold, making it more chemically active. Furthermore, our experimental and theoretical results show quite clearly that not only gold is perturbed when gold and titania interact. The adsorbed gold, on its part, enhances the reactivity of titania by facilitating the migration of O vacancies from the bulk to the surface of the oxide. In general, the complex coupling of these phenomena must be taken into consideration when trying to explain the unusual chemical and catalytic activity of Au/TiO(2). In many situations, the oxide support can be much more than a simple spectator.  相似文献   
102.
A method for the simultaneous spectrophotometric determination of the divalent ions of iron, cobalt, nickel and copper based on the formation of their complexes with 1,5-bis(di-2-pyridylmethylene) thiocarbonohydrazide (DPTH) is proposed. The resolution of quaternary mixtures of these metallic ions was accomplished by several chemometric approaches. A comparative study of the results obtained for simultaneous determinations in mixture by using principal component regression (PCR) and partial least-squares regression (PLS-1 and PLS-2) for absorbance, first-derivative and second-derivative data is presented. In general, the best recovery values are obtained by the PLS-2 method for absorbance data. This procedure allows the simultaneous determination of the cited ions in alloys and biological materials Good reliability of the determination was proved.  相似文献   
103.
The hemilabile Ad2P(o-C6H4)NMe2 ligand promotes fast, quantitative and irreversible oxidative addition of alkynyl and vinyl iodides to gold. The reaction is general. It works with a broad range of substrates of various electronic bias and steric demand, and proceeds with complete retention of stereochemistry from Z and E vinyl iodides. Both alkynyl and vinyl iodides react faster than aryl iodides. The elementary step is amenable to catalysis. Oxidative addition of vinyl iodides to gold and π-activation of alkenols (and N-alkenyl amines) at gold have been combined to achieve hetero-vinylation reactions. A number of functionalized heterocycles, i.e. tetrahydrofuranes, tetrahydropyranes, oxepanes and pyrrolidines were obtained thereby (24 examples, 87% average yield). Taking advantage of the chemoselectivity for vinyl iodides over aryl iodides, sequential transformations involving first a hetero-vinylation step and then a C–N coupling, a C–C coupling or an heteroarylation were achieved from a vinyl/aryl bis-iodide substrate.

The hemilabile Ad2P(o-C6H4)NMe2 ligand promotes fast, quantitative and irreversible oxidative addition of alkynyl and vinyl iodides to gold.  相似文献   
104.
The reactivity of W(NPh)(o-(Me3SiN)2C6H4)(py)2 and W(NPh)(o-(Me3SiN)2C6H4)(pic)2 (py=pyridine; pic=4-picoline) with unsaturated substrates has been investigated. Treatment of W(NPh)(o-(Me3SiN)2C6H4)(py)2 with diphenylacetylene or 2,3-dimethyl-1,3-butadiene generates W(NPh)(o-(Me3SiN)2C6H4)(eta2-PhCCPh) and W(NPh)(o-(Me3SiN)2C6H4)(eta4-CH2=C(Me)C(Me)=CH2), respectively, while the addition of ethylene to W(NPh)(o-(Me3SiN)2C6H4)(py)2 generates the known metallacycle W(NPh)(o-(Me3SiN)2C6H4)(CH2CH2CH2CH2). The addition of 2 equiv of acetone to W(NPh)(o-(Me3SiN)2C6H4)(pic)2 provides the azaoxymetallacycle W(NPh)(o-(Me3SiN)2C6H4)(OCH(Me)2)(OC(Me)2-o-C5H3N-p-Me), the result of acetone insertion into the ortho C-H bond of picoline. Similarily, the addition of 2 equiv of RC(O)H [R=Ph, tBu] to W(NPh)(o-(Me3SiN)2C6H4)(py)2 generates W(NPh)(o-(Me3SiN)2C6H4)(OCH2R)(OCHR-o-C5H4N) [R=Ph, tBu,]. In contrast, reaction between W(NPh)(o-(Me3SiN)2C6H4)(py)2 and 2-pyridine carboxaldehyde yields the diolate W(NPh)(o-(Me3SiN)2C6H4)(OCH(C5H4N)CH(C5H4N)O). The synthesis of W(NPh)(o-(Me3SiN)2C6H4)(PMe3)(py)(eta2-OC(H)C6H4-p-Me), formed by the addition of p-tolualdehyde to a mixture of W(NPh)(o-(Me3SiN)2C6H4)(py)2 and PMe3, suggests that an eta2-aldehyde intermediate is involved in the formation of the azaoxymetallacycle, while the isolation of W(NPh)(o-(Me3SiN)2C6H4)(Cl)(OC(Me)(CMe3)-o-C5H4N), formed by the reaction of pinacolone with W(NPh)(o-(Me3SiN)2C6H4)(py)2, in the presence of adventitious CH2Cl2, suggests that the reaction proceeds via the hydride W(NPh)(o-(Me3SiN)2C6H4)(H)(OC(Me)(CMe3)-o-C5H4N).  相似文献   
105.
106.
The behavior of (Z)-3-p-tolylsulfinylacrylonitrile (1) as a chiral dienophile has been evaluated from its reactions with furan and acyclic dienes. Electrostatic interactions of the cyano group with the sulfinyl one restrict the conformational mobility around the C-S bond, thus controlling the pi-facial selectivity, which is almost complete in all cases, the approach of the diene from the less-hindered face of the dienophile (that bearing the lone electron pair) in the predominant rotamer being the favored one. The regioselectivity is also completely controlled by the cyano group. Additionally, the reactivity of compound 1 as well as its endo-selectivity are both higher than those observed for the corresponding (Z)-3-sulfinylacrylates, thus proving the potential of sulfinylnitriles as chiral dienophiles.  相似文献   
107.
Traditionally, the screening of unknown pesticides in food has been accomplished by GC/MS methods using conventional library searching routines. However, many of the new polar and thermally labile pesticides and their degradates are more readily and easily analyzed by LC/MS methods and no searchable libraries currently exist (with the exception of some user libraries, which are limited). Therefore, there is a need for LC/MS approaches to detect unknown non-target pesticides in food. This report develops an identification scheme using a combination of LC/MS time-of-flight (accurate mass) and LC/MS ion trap MS (MS/MS) with searching of empirical formulas generated through accurate mass and a ChemIndex database or Merck Index database. The approach is different than conventional library searching of fragment ions. The concept here consists of four parts. First is the initial detection of a possible unknown pesticide in actual market-place vegetable extracts (tomato skins) using accurate mass and generating empirical formulas. Second is searching either the Merck Index database on CD (10,000 compounds) or the ChemIndex (77,000 compounds) for possible structures. Third is MS/MS of the unknown pesticide in the tomato-skin extract followed by fragment ion identification using chemical drawing software and comparison with accurate-mass ion fragments. Fourth is the verification with authentic standards, if available. Three examples of unknown, non-target pesticides are shown using a tomato-skin extract from an actual market place sample. Limitations of the approach are discussed including the use of A + 2 isotope signatures, extended databases, lack of authentic standards, and natural product unknowns in food extracts.  相似文献   
108.
Gas‐phase C―C coupling reactions mediated by Ni (II) complexes were studied using a linear quadrupole ion trap mass spectrometer. Ternary nickel cationic carboxylate complexes, [(phen)Ni (OOCR1)]+ (where phen = 1,10‐phenanthroline), were formed by electrospray ionization. Upon collision‐induced dissociation (CID), they extrude CO2 forming the organometallic cation [(phen)Ni(R1)]+, which undergoes gas‐phase ion‐molecule reactions (IMR) with acetate esters CH3COOR2 to yield the acetate complex [(phen)Ni (OOCCH3)]+ and a C―C coupling product R1‐R2. These Ni(II)/phenanthroline‐mediated coupling reactions can be performed with a variety of carbon substituents R1 and R2 (sp3, sp2, or aromatic), some of them functionalized. Reaction rates do not seem to be strongly dependent on the nature of the substituents, as sp3sp3 or sp2sp2 coupling reactions proceed rapidly. Experimental results are supported by density functional theory calculations, which provide insights into the energetics associated with the C―C bond coupling step.  相似文献   
109.
[reaction: see text] Formal heterolytic activation of elemental hydrogen under Rh catalysis enables the reductive generation of enolates from enones under hydrogenation conditions. Enolates generated in this fashion participate in catalytic C-C bond formation via carbonyl addition to aldehyde and, as demonstrated in this account, ketone partners. Notably, the use of appendant dione partners enables diastereoselective formation of cycloaldol products possessing 3-stereogenic centers, including 2-contiguous quaternary centers.  相似文献   
110.
Understanding the interactions between molecules and living organisms is of paramount importance for the evaluation of pharmaceutical activity, chemical toxicity and all manner of microbiological studies. The capability of capillary electrophoresis (CE) in the evaluation of molecule-microbe interactions is examined in the present paper. The fundamental chemical concept of the binding or association constant for molecular systems measured in free solution is discussed for biological systems where microorganisms uptake or associate with molecules from their environment. The heterogeneity of the living organisms must be understood and accounted for including differences related to semantics such as concentration units and the nature of the associations between two entities and large differences in the size and number of microorganisms as compared to molecules. Finally, the added complexity and even inhomogeneity of a cell compared to most molecular systems must be considered and possibly controlled. The binding of specific molecules to viruses is discussed. CE can be utilized to quickly determine if a molecule binds very strongly or not at all to a cell (i.e., a binary yes/no answer). This could be useful for initial high-throughput screening purposes when using capillary arrays, for example. CE can be useful for determining unusual (large) molecule/microbe stoichiometries. Finally, CE can sometimes be used to determine the size of binding constants (K(RL)) within certain limits provided experimental conditions can be formulated that minimize problems of biological heterogeneity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号