首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5779篇
  免费   189篇
  国内免费   19篇
化学   3545篇
晶体学   47篇
力学   136篇
数学   587篇
物理学   1672篇
  2023年   53篇
  2022年   102篇
  2021年   114篇
  2020年   137篇
  2019年   134篇
  2018年   130篇
  2017年   84篇
  2016年   164篇
  2015年   114篇
  2014年   159篇
  2013年   322篇
  2012年   372篇
  2011年   431篇
  2010年   223篇
  2009年   187篇
  2008年   312篇
  2007年   314篇
  2006年   312篇
  2005年   278篇
  2004年   202篇
  2003年   168篇
  2002年   143篇
  2001年   83篇
  2000年   80篇
  1999年   57篇
  1998年   50篇
  1997年   49篇
  1996年   52篇
  1995年   51篇
  1994年   49篇
  1993年   62篇
  1992年   48篇
  1991年   38篇
  1990年   50篇
  1989年   41篇
  1988年   40篇
  1987年   39篇
  1985年   50篇
  1984年   48篇
  1983年   42篇
  1982年   43篇
  1981年   51篇
  1980年   50篇
  1979年   37篇
  1978年   45篇
  1977年   42篇
  1976年   40篇
  1975年   33篇
  1974年   39篇
  1973年   44篇
排序方式: 共有5987条查询结果,搜索用时 0 毫秒
101.
102.
103.
A new version of the single-reference-extended kinetic method is presented in which direct entropy correction is incorporated. Results of calibration experiments with the monodentate base pyridine and the bidentate base ethylenediamine are presented for which the method provides proton affinities in excellent agreement with published values and reasonable predictions for the protonation entropies. The method is then used to determine the proton affinity and protonation entropy of the non-protein amino acid beta-oxalylaminoalanine (BOAA). The PA of BOAA is found to be 933.1 +/- 7.8 kJ/mol and a prediction for the protonation entropy of -39 J mol(-1) K(-1) is also obtained, indicating a significant degree of intramolecular hydrogen bonding in the protonated form. These results are supported by hybrid density functional theory calculations at the B3LYP/6-311++G**//B3LYP/6-31+G* level. They indicate that the preferred site of protonation is the alpha-nitrogen atom (PA = 935.0 kJ/mol) and that protonated BOAA has a strong hydrogen bond between the hydrogen on the alpha-amino group and one of the carbonyl oxygen atoms on the side chain.  相似文献   
104.
The use of side chains as catalytic cofactors for protein mediated redox chemistry raises significant mechanistic issues as to how these amino acids are activated toward radical chemistry in a controlled manner. De novo protein design has been used to examine the structural basis for the creation and maintenance of a tryptophanyl radical in a three-helix bundle protein maquette. Here we report the detailed structural analysis of the protein by multidimensional NMR methods. An interesting feature of the structure is an apparent pi-cation interaction involving the sole tryptophan and a lysine side chain. Hybrid density functional calculations support the notion that this interaction raises the reduction potential of the W degrees /WH redox pair and helps explain the redox characteristics of the protein. This model protein system therefore provides a powerful model for exploring the structural basis for controlled radical chemistry in protein.  相似文献   
105.
The two thermodynamic dissociation constants of glycine at 11 temperatures from 5 to 55°C in 50 mass % methanol-water mixed solvent have been determined from precise emf measurements with hydrogen-silver bromide electrodes in cells without liquid junction. The first acidic dissociation constant (K 1)for the process HG+H++G± is expressed as a function ofT(oK) by the equation pK 1 = 2043.5/T – 9.6504 + 0.019308T. At 25°C, pK 1is 2.961 in the mixed solvent, as compared with 2.350 in water, with H°=1497 cal-mole–1, G°=4038 cal-mole–1, S°=–8.52 cal-°K–1-mole–1, and C p o =–53 cal-°K–1-mole–1. The second acidic dissociation constant (K 2)for the process G±H++G over the temperature range studied is given by the equation pK 2 = 3627.1/T – 7.2371 + 0.015587T. At 25°C, pK 2is 9.578 in MeOH–H2O as compared with 9.780 in water, whereas H° is 10,257 cal-mole–1, G° is 13,063 cal-mole–1, S° is –9.41 cal-°K–1-mole–1, and C p o is –43 cal-°K–1-mole–1. The protonated glycine becomes weaker in 50 mass % methanol-water, whereas the second dissociation process becomes stronger despite the lower dielectric constant of the mixed solvent (=56.3 at 25°C).  相似文献   
106.
We report in this paper the results of outer and inner valence IP calculations for the HF molecule using two different many-body methods for the direct evaluation of energy differences. The first is the nonperturbative coupled-cluster based linear response theory (LRT) and the second is the hermitian open-shell many-body perturbation theory (MBPT). A Huzinaga-Dunning (9s5p→ 5s3p/3s) basis has been used. LRT uses an “ionization operator” S as in the equation of motion method (EOM) to generate the ionized states from a coupled-cluster type of ground state. S is chosen to consist of single ionization and ionization-cum-shake-up operators, thus treating the Koopmans as well as the shake-up states on equal footing. LRT would thus be capable of computing both the outer and the inner valence regions with equal facility. This is borne out by the results. For the open-shell MBPT, the model space is chosen to be spanned by the singly ionized determinants. The convergence of the results for the inner valence region is slow, and the results obtained from the [2, 1] Pade' approximants are presented. Unlike the LRT, the inner valence region is not reproduced with full complexity in MBPT, indicating that it is essential to modify the theory by way of expanding the model space to contain the shake-up determinants also.  相似文献   
107.
In vitro glycorandomization (IVG) technology is dependent upon the ability to rapidly synthesize sugar phosphates. Compared with chemical synthesis, enzymatic (kinase) routes to sugar phosphates would be attractive for this application. This work focuses upon the development of a high-throughput colorimetric galactokinase (GalK) assay and its application toward probing the substrate specificity and kinetic parameters of Escherichia coli GalK. The demonstrated dinitrosalicylic assay should also be generally applicable to a variety of sugar-processing enzymes. [reaction: see text]  相似文献   
108.
Folded polymers are used in Nature for virtually every vital process. Nonnatural folded polymers, or foldamers, have the potential for similar versatility, and the design and refinement of such molecules is of considerable current interest. Here we report a complete and systematic analysis of the relationship between side chain structure and the 14-helicity of a well-studied class of foldamers, beta(3)-peptides, in water. Our experimental results (1) verify the importance of macrodipole stabilization for maintaining 14-helix structure, (2) provide comprehensive evidence that beta(3)-amino acids branched at the first side chain carbon are 14-helix-stabilizing, (3) suggest a novel role for side chain hydrogen bonding as an additional stabilizing force in beta(3)-peptides containing beta(3)-homoserine or beta(3)-homothreonine, and (4) demonstrate that diverse functionality can be incorporated into a stable 14-helix. Gas- and solution-phase calculations and Monte Carlo simulations recapitulate the experimental trends only in the context of oligomers, yielding insight into the mechanisms behind 14-helix folding. The 14-helix propensities of beta(3)-amino acids differ starkly from the alpha-helix propensities of analogous alpha-amino acids. This contrast informs current models for alpha-helix folding, and suggests that 14-helix folding is governed by different biophysical forces than is alpha-helix folding. The ability to modulate 14-helix structure through side chain choice will assist rational design of 14-helical beta-peptide ligands for macromolecular targets.  相似文献   
109.
Surfactant outgrowth during dissolution as myelin figures, which happens on contact with water, is of prime importance in emulsification and detergency. Micro-Raman investigation of different lyotropic phases formed during dissolution of aerosol-OT (bis 2-ethylhexyl sulfosuccinate) in water during myelin formation reveals the flexible arrangement of the surfactant bilayers in myelin. The conformation around CC-CS bond and the hydrocarbon chains of aerosol-OT in the different liquid crystalline phases were identified from the fingerprints of CC-CS stretching, C-C stretching, C-H bending, and stretching frequencies. Existence of mixture of trans and gauche conformations around CC-CS bond and that of the hydrocarbon chains in myelin supports the fluid nature of bilayers by which it is made. Similar conformations of hydrocarbon chains in lamellar phase and in myelin support the concept of myelins being rolled up lamella. The observations are in line with the disorderness of the hydrocarbon chains in the bilayers of phospholipids that has been reported earlier. From the C-C stretching frequencies at the root of myelins, the kinked structure of the hydrocarbon chain is identified, and loose packing of molecules which would facilitate water transport across membranes is evident.  相似文献   
110.
A simple and highly efficient one-pot procedure for allylation and propargylation of arylepoxides has been developed. A combination of SnCl2 and catalytic Pd(0) or Pd(II) promotes the reaction of organic halides and epoxides in DMSO with controlled water addition, leading to the regioselective formation of the corresponding homoallyl and homopropargyl alcohols in good yields.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号