首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   747篇
  免费   22篇
  国内免费   1篇
化学   432篇
力学   16篇
数学   146篇
物理学   176篇
  2022年   4篇
  2021年   10篇
  2020年   9篇
  2019年   11篇
  2018年   8篇
  2017年   4篇
  2016年   10篇
  2015年   17篇
  2014年   20篇
  2013年   27篇
  2012年   43篇
  2011年   65篇
  2010年   33篇
  2009年   25篇
  2008年   38篇
  2007年   36篇
  2006年   48篇
  2005年   46篇
  2004年   38篇
  2003年   31篇
  2002年   29篇
  2001年   17篇
  2000年   20篇
  1999年   6篇
  1998年   6篇
  1997年   12篇
  1996年   8篇
  1995年   8篇
  1994年   8篇
  1993年   9篇
  1992年   8篇
  1991年   6篇
  1990年   4篇
  1989年   3篇
  1987年   5篇
  1985年   10篇
  1984年   8篇
  1982年   6篇
  1981年   8篇
  1980年   6篇
  1979年   6篇
  1978年   14篇
  1977年   8篇
  1976年   4篇
  1975年   3篇
  1974年   5篇
  1973年   3篇
  1972年   3篇
  1970年   3篇
  1968年   3篇
排序方式: 共有770条查询结果,搜索用时 265 毫秒
761.
762.
The extended tube-model was presented by KALISKE & HEINRICH (RCT 72, 602-632) in 1999 as a novel approach for isothermal hyperelasticity of rubberlike materials. This contribution is dedicated to its further development to finite non-linear thermo-viscoelasticity. A non-linear evolution law and a thermo-mechanical coupled free energy formulation are the kernel of the phenomenological approach where the elastic material response is inspired by statistical-mechanical theory. The representation of viscoelasticity is based on a multiplicative decomposition of the deformation gradient. The Helmholtz free energy of the material is formulated in terms of isothermal free energy functions multiplicatively coupled with non-linear temperature evolution functions. The non-linear evolution law for the viscous material branch is solved by applying a predictor-corrector algorithm with an exponential mapping scheme. In today's literature, several sophisticated thermo-mechanical material models are available. However, they are built upon a considerable number of material parameters governing the mechanical and thermal material response which need to be identified for practical application. Therefore, particular emphasis is given to an appropriate parameter identification technique for the thermal field. For the latter, a uniaxial extension test is carried out where the recorded data of the temperature field of the rubber specimen under cyclic loading is used for parameter identification. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
763.
We consider the first-order Cauchy problem
$ \begin{gathered} \partial _z u + a(z,x,D_x )u = 0,0 < z \leqslant Z, \hfill \\ u|_{z = 0} = u_0 , \hfill \\ \end{gathered} $ \begin{gathered} \partial _z u + a(z,x,D_x )u = 0,0 < z \leqslant Z, \hfill \\ u|_{z = 0} = u_0 , \hfill \\ \end{gathered}   相似文献   
764.
Changes in domain wall resistance under radio-frequency (RF) irradiation are experimentally studied for transverse walls. An original experimental technique is applied to the measurement in a permalloy nano-stripe with a notch, where the walls are found to provide a largely enhanced resistive response as compared to saturated domains. Their susceptibility is found to be an order of magnitude larger than that of the domains in a frequency range between 5 and 20 GHz. We argue that the RF fields induce an internal distortion of the magnetization profile that depends on the shape of the domain wall.  相似文献   
765.
Ronny Behnke  Michael Kaliske 《PAMM》2012,12(1):299-300
Elastomers are widely used in today's life. The material is characterized by large deformability upon failure, elastic and time dependent as well as non-time dependent effects which can be also a function of temperature. In addition, cyclically loaded components show heat build-up which is due to dissipation. As a result, the temperature evolution of an elastomeric component can strongly influence the material properties and durability characteristics. Representing best the real thermo-mechanical behaviour of an elastomeric component in its design process is one motivation for the use of sophisticated, coupled material approaches within numerical simulations. In order to assess the durability characteristics, for example regarding crack propagation, material forces (configurational forces) are one possible approach to be applied. In the present contribution, the implementation of material forces for a thermo-mechanically coupled material model including a continuum mechanical damage (CMD) approach is demonstrated in the context of the Finite Element Method (FEM). Special emphasis is given to material forces resulting from internal variables (viscosity and damage variables), temperature field evolution and dynamic loading. Using the example of an elastomeric component, for which the material model parameters have been previously identified by a uniaxial extension test, material forces are evaluated quantitatively. The influence of each contribution (internal variables, temperature field and dynamics) is illustrated and compared to the overall material force response. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
766.
Single crystals of the fluoride compound KY3F10 (Oh5) were studied by Raman scattering from 40 to 950 K. Group theory analysis predicts 3A1g + 4Eg + 6F2g Raman-active modes, but the experimental spectra show two F2g modes missing. Over the whole temperature range the frequency shifts are negligible whereas the line widths show a strong increase with temperature. Both reversible and irreversible line width behaviour are exhibited for different temperature runs, indicating a complex microscopic phenomenon underlying the creation of defects responsible for these line widths and their interaction with the different phonon modes. An approximate activation energy for defect creation of ΔE ≈︁ 0.3 eV can be obtained from the temperature behaviour of the line widths. This activation energy may be connected with the high-temperature ionic conduction mentioned previously for this crystal.  相似文献   
767.
The application of numerical methods for the calculation of the molecular weight distribution of living ionic polymerization, carried out in the presence of monofunctional and polyfunctional transfer agents, is described. The methods used include the numerical solution of a system of differential equations by the Runge-Kutta-Merson procedure and the statistical Monte-Carlo approach. When a monofunctional transfer agent is used, the Runge-Kutta-Merson procedure is quite useful for the calculation of the molecular weight distribution for various polymerization systems. When a polymerization is carried out in the presence of a polyfunctional transfer agent, the mechanism includes the coupling of polymer chains. Due to the complexity of the system, the Runge-Kutta-Merson procedure is hardly applicable and problems of this type should be solved by a Monte Carlo simulation procedure. Once a computer program has been written, both methods allow the chemist to calculate the molecular weight distribution of a polymer as a function of the different kinetic parameters of the polymerization.  相似文献   
768.
769.
Ronny Behnke  Michael Kaliske 《PAMM》2015,15(1):121-122
Recently, a scaled boundary finite element (SBFE) formulation for geometrically and physically nonlinear materials has been developed using the scaled boundary finite element method (SBFEM). The SBFE formulation has been employed to describe plane stress problems of notched and unnotched hyperelastic elastomer specimens. In this contribution, the derived SBFE formulation is extended to nonlinear time- and temperature-dependent material behavior. Subsequently, the SBFE formulation is incorporated into a crack propagation scheme to model crack propagation in cyclically loaded elastomer specimens of the so-called tear fatigue analyzer (TFA). (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
770.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号