首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   424篇
  免费   19篇
化学   269篇
晶体学   9篇
力学   7篇
数学   60篇
物理学   98篇
  2024年   1篇
  2021年   5篇
  2020年   5篇
  2019年   2篇
  2018年   10篇
  2017年   7篇
  2016年   19篇
  2015年   22篇
  2014年   18篇
  2013年   27篇
  2012年   25篇
  2011年   31篇
  2010年   20篇
  2009年   10篇
  2008年   32篇
  2007年   27篇
  2006年   20篇
  2005年   23篇
  2004年   22篇
  2003年   13篇
  2002年   9篇
  2001年   7篇
  2000年   7篇
  1999年   6篇
  1998年   3篇
  1997年   2篇
  1996年   5篇
  1995年   2篇
  1994年   2篇
  1993年   4篇
  1992年   2篇
  1991年   5篇
  1990年   1篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   6篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   8篇
  1981年   7篇
  1980年   1篇
  1977年   2篇
  1973年   1篇
  1967年   1篇
  1966年   1篇
  1938年   1篇
  1928年   2篇
排序方式: 共有443条查询结果,搜索用时 281 毫秒
61.
The impact of annealing at 300 °C on the elemental composition and the atomic structure of the Co/V interface in the 2.5 Å Co/70 Å V/MgO (100) system has been investigated by medium energy ion scattering (MEIS) using 100 keV He+ ions. By combining the experimental MEIS results with simulations we show that, while the Co/V interface is abrupt for the system kept at room temperature, annealing at 300 °C induces a strong interdiffusion leading to a Co0.5V0.5 surface bcc alloy with a high degree of disorder. Additionally, the MEIS data suggest that the surface of the annealed system is slightly rumpled by ~ 0.2 Å.  相似文献   
62.
Crossing by lines all edges of a line arrangement   总被引:1,自引:0,他引:1  
  相似文献   
63.
64.
65.
Novel biomaterials are needed for bone tissue repair with improved mechanical performance compared to classical bioceramics. The objective of this work was to characterize a hybrid filler material, which is capable to coat as a thin film porous scaffolds improving their mechanical properties for bone tissue engineering. The hybrid filler material is a blend of chitosan and silica network formed through in situ sol–gel using tetraethylortosilicate and 3‐glycidoxypropyltrimethoxysilane (GPTMS) as silica precursors. The hypothesis was that the epoxy ring of GPTMS could react with the amino groups of chitosan in acidic media while it is also reacting the siloxane groups of hydrolyzed silica precursors. The formation of the hybrid organic–inorganic network was assessed by different physical techniques revealing changes in molecular mobility and hydrophilicity upon chemical reaction. Finally, the cytotoxicity of the samples was also evaluated by MTT assay. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1391–1400  相似文献   
66.
Transpiration cooling using ceramic matrix composite materials is an innovative concept for cooling rocket thrust chambers. The coolant (air) is driven through the porous material by a pressure difference between the coolant reservoir and the turbulent hot gas flow. The effectiveness of such cooling strategies relies on a proper choice of the involved process parameters such as injection pressure, blowing ratios, and material structure parameters, to name only a few. In view of the limited experimental access to the subtle processes occurring at the interface between hot gas flow and porous medium, reliable and accurate simulations become an increasingly important design tool. In order to facilitate such numerical simulations for a carbon/carbon material mounted in the side wall of a hot gas channel that are able to capture a spatially varying interplay between the hot gas flow and the coolant at the interface, we formulate a model for the porous medium flow of Darcy–Forchheimer type. A finite‐element solver for the corresponding porous medium flow is presented and coupled with a finite‐volume solver for the compressible Reynolds‐averaged Navier–Stokes equations. The two‐dimensional and three‐dimensional results at Mach number Ma = 0.5 and hot gas temperature THG=540 K for different blowing ratios are compared with experimental data. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
67.
We demonstrate a high-resolution technique to measure the optical magnitude and phase responses of fiber gratings. The technique employs single-sideband modulation of an optical source and has spectral resolution in the hertz regime. The technique is demonstrated by measurement of the phase ripples of unapodized and apodized chirped gratings as well as the transmission spectrum of a pi-phase-shifted grating. Although it is demonstrated on fiber gratings, the technique is applicable to any optical device.  相似文献   
68.
An analytical method was developed for the determination of sulfamethoxazole (SMZ) in the presence of trimethoprim (TMP) by normal fluorescence. When both analytes are present a selective derivatization with fluorescamine of SMZ gives an intense fluorescent derivative with no interference from the other compound. The reaction was optimized to obtain the best analytical performance. The detection limit and the lower limit of quantitation of SMZ in the reaction medium was 5.2 ng/mL. The intra-day precision (relative standard deviation) was 1.51% for a 100 ng/mL SMZ standard solution and the inter-day precision over 7 days for a 100 ng/mL solution in the presence of 20 ng/mL TMP solution was 2.5%. The method has been applied to three pharmaceutical preparations containing both compounds, without any separation steps required.  相似文献   
69.
This article reports on the structure of the glassy system xCuO-65TeO2-(35−x)V2O5, 5≤x≤10 mol% which was studied using infrared (IR) and Raman spectroscopy methods as well as magnetic susceptibility measurements. IR and Raman spectroscopy analysis reveals the presence of four main absorption bands attributed to [TeO3], [TeO4], [VO4], and [VO5] structure units. It suggests that Cu2+ ions occupy the available open spaces of the Te-O network without straining the bonds too much. Increasing the concentration of Cu2+ ions beyond 5 mol% results in the modification of the glass by straining and locally distorting the surrounding of the Te-O network. The magnetic susceptibility of these materials was investigated in the temperature range of 5-200 K revealing the paramagnetic behavior described by the Curie-Weiss law and indicating the presence of weak antiferromagnetic exchange interactions between Cu ions. The magnetic entropy change of the glasses was determined based on the temperature and magnetic field dependence of magnetization.  相似文献   
70.
The catalytic mechanism of nitrate reduction by periplasmic nitrate reductases has been investigated using theoretical and computational means. We have found that the nitrate molecule binds to the active site with the Mo ion in the +6 oxidation state. Electron transfer to the active site occurs only in the proton‐electron transfer stage, where the MoV species plays an important role in catalysis. The presence of the sulfur atom in the molybdenum coordination sphere creates a pseudo‐dithiolene ligand that protects it from any direct attack from the solvent. Upon the nitrate binding there is a conformational rearrangement of this ring that allows the direct contact of the nitrate with MoVI ion. This rearrangement is stabilized by the conserved methionines Met141 and Met308. The reduction of nitrate into nitrite occurs in the second step of the mechanism where the two dimethyl‐dithiolene ligands have a key role in spreading the excess of negative charge near the Mo atom to make it available for the chemical reaction. The reaction involves the oxidation of the sulfur atoms and not of the molybdenum as previously suggested. The mechanism involves a molybdenum and sulfur‐based redox chemistry instead of the currently accepted redox chemistry based only on the Mo ion. The second part of the mechanism involves two protonation steps that are promoted by the presence of MoV species. MoVI intermediates might also be present in this stage depending on the availability of protons and electrons. Once the water molecule is generated only the MoVI species allow water molecule dissociation, and, the concomitant enzymatic turnover. © 2009 Wiley Periodicals, Inc. J Comput Chem, 2009  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号