首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   320篇
  免费   11篇
  国内免费   3篇
化学   226篇
晶体学   2篇
力学   9篇
数学   46篇
物理学   51篇
  2024年   1篇
  2023年   4篇
  2022年   3篇
  2021年   15篇
  2020年   2篇
  2019年   8篇
  2018年   2篇
  2017年   4篇
  2016年   9篇
  2015年   11篇
  2014年   13篇
  2013年   25篇
  2012年   18篇
  2011年   22篇
  2010年   9篇
  2009年   19篇
  2008年   22篇
  2007年   24篇
  2006年   20篇
  2005年   17篇
  2004年   14篇
  2003年   7篇
  2002年   8篇
  2001年   7篇
  2000年   6篇
  1999年   3篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   3篇
  1993年   1篇
  1991年   3篇
  1990年   4篇
  1988年   3篇
  1987年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   1篇
  1962年   2篇
  1956年   1篇
排序方式: 共有334条查询结果,搜索用时 31 毫秒
11.
Screening parameters to be used in Slater Type Orbitals were obtained in analytic form. The values compared well with the numerical results given by Clementi and Roetti (after a laborious process of optimization) and with the phenomenological values of Jung and Gould. The analytic formulation is based on the splitting of the two-body operator 1/rst as the sum of effective one-body operators.  相似文献   
12.
13.
Photopolymerization is a phenomenon that is the basis of much of today's microfabrication technology and intense research is conducted to improve its control and the characteristics of end products for a variety of applications. The design of microscopic structures often relies on the accurate knowledge and modeling of photopolymer's behavior upon exposure, i.e. the Dill parameters, for each radiation species of interest and therefore the development of flexible characterization techniques is of great importance. SU‐8 is a popular compound that is representative of a whole class that relies on cationic polymerization, where an acid is obtained via photolysis of an onium salt during exposure. Here we report on the observation of SbF6? via laser desorption mass spectrometry on SU‐8 exposed to UV light at the wavelength of 365 nm and demonstrate that the yield of this counter‐anion as a function of exposure is consistent with the Dill C parameter value available in the literature. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 967–972  相似文献   
14.
The combination of the control of the concentration of stereodefects in isotactic polypropylene using metallocene catalysts and the crystallization via the mesophase is a strategy to tailor the mechanical properties. Stiff materials, flexible materials, and thermoplastic elastomers can be produced depending only on the concentration of rr stereodefects. Modulus, ductility, and strength can be modulated through the crystallization of α and γ forms or of the mesophase. Different morphologies are observed depending on the stereoregularity and conditions of crystallization. Crystals of the mesomorphic form always exhibit a nodular morphology, accounting for the similar good deformability of all quenched samples, whatever the concentration of stereodefects. The mesophase transforms by thermal treatments into the α form preserving the nodular morphology, with increase of strength while maintaining the ductility typical of the mesophase. Annealing of the mesophase permits a precise adjustment of crystallinity and size of nodular crystals offering additional options to modify the mechanical properties. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 677–699  相似文献   
15.
16.
Recent developments in computational chemistry and biology have come together in the “inside‐out” approach to enzyme engineering. Proteins have been designed to catalyze reactions not previously accelerated in nature. Some of these proteins fold and act as catalysts, but the success rate is still low. The achievements and limitations of the current technology are highlighted and contrasted to other protein engineering techniques. On its own, computational “inside‐out” design can lead to the production of catalytically active and selective proteins, but their kinetic performances fall short of natural enzymes. When combined with directed evolution, molecular dynamics simulations, and crowd‐sourced structure‐prediction approaches, however, computational designs can be significantly improved in terms of binding, turnover, and thermal stability.  相似文献   
17.
Enantiomers represent a class of compounds extensively investigated since they can show totally different behaviors when they interact with a chiral environment. Because of their identical chemical structure (they differ only in the spatial arrangement of the atoms in the molecule), the separation of optical isomers is a challenging task of analytical chemistry. So far employed methods for the separation of enantiomers are mainly based on chromatography. CE as well was considered as an analytical technique suitable for chiral separations, characterized by high efficiency and low consumption of reagent. Recently, miniaturization was introduced in LC to answer the needs to perform analyses in the minimum time, to use the smallest amount of samples and to reduce environmental pollution. Nano‐LC represents nowadays a valid alternative to the abovementioned conventional analytical techniques, and can be advantageously exploited for enantiomeric separation especially because it needs minute amounts of the chiral material necessary to carry out enantiomeric separations. This review describes the development and applications of nano‐LC in the field of chiral separations. The data reported in literature show its relevance for the study enantiomers‐chiral selectors interaction, as well as for application in pharmaceutical and clinical research.  相似文献   
18.
Mixed fermentation using Starmerella bacillaris and Saccharomyces cerevisiae has gained attention in recent years due to their ability to modulate the qualitative parameters of enological interest, such as the color intensity and stability of wine. In this study, three of the most important red Apulian varieties were fermented through two pure inoculations of Saccharomyces cerevisiae strains or the sequential inoculation of Saccharomyces cerevisiae after 48 h from Starmerella bacillaris. The evolution of anthocyanin profiles and chromatic characteristics were determined in the produced wines at draining off and after 18 months of bottle aging in order to assess the impact of the different fermentation protocols on the potential color stabilization and shelf-life. The chemical composition analysis showed titratable acidity and ethanol content exhibiting marked differences among wines after fermentation and aging. The 48 h inoculation delay produced wines with higher values of color intensity and color stability. This was ascribed to the increased presence of compounds, such as stable A-type vitisins and reddish/violet ethylidene-bridge flavonol-anthocyanin adducts, in the mixed fermentation. Our results proved that the sequential fermentation of Starmerella bacillaris and Saccharomyces cerevisiae could enhance the chromatic profile as well as the stability of the red wines, thus improving their organoleptic quality.  相似文献   
19.
Linear conjugated oligothiophenes of variable length and different substitution pattern are ubiquitous in technologically advanced optoelectronic devices, though limitations in application derive from insolubility, scarce processability and chain‐end effects. This study describes an easy access to chiral cyclic oligothiophenes constituted by 12 and 18 fully conjugated thiophene units. Chemical oxidation of an “inherently chiral” sexithiophene monomer, synthesized in two steps from commercially available materials, induces the formation of an elliptical dimer and a triangular trimer endowed with electrosensitive cavities of different tunable sizes. Combination of chirality with electroactivity makes these molecules unique in the current oligothiophenes literature. These macrocycles, which are stable and soluble in most organic solvents, show outstanding chiroptical properties, high circularly polarized luminescence effects and an exceptional enantiorecognition ability.  相似文献   
20.
Anatomical and physico-chemical properties of residual natural fibers (sugarcane bagasse, coconut fibers and peanut hulls) were characterized in order to evaluate their potential for use in the production of particleboard. The bulk density was determined by helium pycnometer and the chemical characteristics by using an electronic pH meter (for pH determination) on fibers dissolved in acidic and neutral detergents (to determine the levels of cellulose, hemicellulose and lignin). The anatomical characteristics were established using scanning electron microscopy coupled with an X-ray detector system, as well as energy dispersive X-ray spectroscopy. Results indicated similarities and differences between physico-chemical and anatomical characteristics of the residual lignocellulosic fibers when compared with the Pinus sp. wood commercially employed in particleboard production. Bulk density and pH for residual lignocellulosic fibers and Pinus sp. wood presented analogous values. Similar amounts of cellulose and lignin were identified between waste fibers and Pinus sp. wood. The presence of silica was identified in coconut fiber, peanut hull and sugarcane bagasse waste fibers, and may affect the mechanical characteristics of panels. Coconut and sugarcane bagasse fibers show surface pores with diameters ranging from 1.2 to 2.1 μm, below the 5 μm identified for Pinus sp. wood. Both fibers present pores distributed over their entire surface, whereas peanut hull fibers have no pores on their surface. This characteristic contributes to resin dispersion among particles, reflecting positively on the physical–mechanical properties of the panels. Particleboards produced with residual lignocellulosic fibers present similar physical–mechanical properties to those of Pinus sp. wood panels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号