The separation and simultaneous determination of caffeine, paracetamol, and acetylsalicylic acid in two analgesic tablet formulations was investigated by capillary electrochromatography (CEC). The effect of mobile phase composition on the separation and peak efficiency of the three analytes was studied and evaluated; in particular, the influence of buffer type, buffer pH, and acetonitrile content of the mobile phase was investigated. The analyses were carried out under optimized separation conditions, using a full-packed silica capillary (75 microm ID; 30.0 cm and 21.5 cm total and effective lengths, respectively) with a 5 microm C8 stationary phase. A mixture of 25 mM ammonium formate at pH 3.0 and acetonitrile (30:70 v/v) was used as the mobile phase. UV detection was at 210 nm. Good linearity was found in the range of 50-200, 20-160, and 4-20 microg/mL for acetylsalicylic acid (r2=0.9988), paracetamol (r2=0.9990) and caffeine (r2=0.9990), respectively. Intermediate precision (RSD interday) as low as 0.1-0.8% was found for retention times, while the RSD values for the peak area ratios (Aanalyte/AIS) were in the range of 1.9-2.9%. The optimized CEC method was applied to the analysis of the studied compounds present in commercial tablets. 相似文献
We here exploit pH-responsive nanogels as carriers to deliver functional anti-GFP siRNA and superparamagnetic IONPs to HeLa-GFP cells. The siRNA release via pH-mediated endosomal escape is shown. The IONPs act first as magnetofection agents to boost cellular uptake and then as probes to track the release mechanism by electron microscopy. 相似文献
ECS-14, a crystalline microporous hybrid organic-inorganic aluminosilicate, has been synthesized by using 1,4-bis-(triethoxysilyl)-benzene (BTEB) as a source of silica. Its structure contains a system of linear channels with 12-membered ring openings, running along the [001] direction, resembling the pore architecture of the AFI framework type. 相似文献
Non‐Stokes–Einstein relaxation : The rate constant of conformational relaxation of a phenylenevinylene trimer (see picture) in different solvents is proportional to η?α, with α values decreasing from close to unity (low viscosity) to zero at sufficiently high solvent viscosity. This behaviour is attributed to the flexible methylbutyl side chains of the trimer, which partially screen the solvent friction.
Formation of self-assembled chains of tetrathiafulvalene (TTF) on the Cu(100) surface has been investigated by scanning tunneling microscopy and density functional theory calculations that include semiempirical van der Waals (vdW) interaction corrections. The calculations show that the chain structures observed in the experiments can only be explained by including the vdW interactions. The molecules are tilted along the chain in order to achieve maximal intermolecular interaction. The chains are metastable on the surface, which is consistent with the experimental observation that they disappear after annealing. The fact that all TTF chains observed in the experiment are short might be possibly explained by the interplay between the stabilizing vdW molecule-molecule interaction and the destabilizing rearrangement of surface atoms due to the strong molecule-substrate interaction. 相似文献
In this study a surfactant-modified zeolite (SMZ) was prepared by adsorbing the cationic surfactant hexadecyltrimethylammonium
(HDTMA) bromide on a clinoptilolite. The adsorption of the surfactant modified the surface properties of the clinoptilolite
and enhanced the anionic capacity of the SMZ. The adsorption equilibrium data of As(V) from the water solution on the SMZ
were obtained in a batch adsorber, and the Langmuir isotherm matched the data reasonably well. The As(V) adsorption capacity
of the SMZ was 12.5 times greater than that of the clinoptilolite. The adsorption of As(V) on SMZ was mainly due to the interactions
between the anionic sites of the SMZ and the As(V) anions in water solution. The adsorption capacity of the SMZ was dependent
on the solution pH. The adsorption capacity was increased and decreased by augmenting the pH from 5 to 7 and from 7 to 12,
respectively. This unusual behavior was due to the fact that the affinity of the As(V) for the SMZ was dependent on the As(V)
species that were present in solution. The adsorption capacity of the SMZ was slightly favored by decreasing the temperature
from 25 to 15 °C. The heat of adsorption was estimated to be ΔHads=−46.82 KJ/mol, indicating that the adsorption was exothermic and the As(V) was chemisorbed on the SMZ. 相似文献
Carbon nanotubes (CNTs) constitute an interesting material for nanomedicine applications because of their unique properties, especially their ability to penetrate membranes, to transport drugs specifically and to be easily functionalized. In this work, the energies of the intermolecular interactions of single-walled CNTs and the anticancer drug doxorubicin (DOX) were determined using the AMBER 12 molecular dynamics MM/PBSA and MM/GBSA methods with the aim of better understanding how the structural parameters of the nanotube can improve the interactions with the drug and to determine which structural parameters are more important for increasing the stability of the complexes formed between the CNTs and DOX. The armchair, zigzag, and chiral nanotubes were finite hydrogen-terminated open tubes, and the DOX was encapsulated inside the tube or adsorbed on the nanotube surface. Pentagon/heptagon bumpy defects and polyethylene glycol (PEG) nanotube functionalization were also studied. The best interaction occurred when the drug was located inside the cavity of the nanotube. Armchair and zigzag nanotubes doped with nitrogen, favored interaction with the drug, whereas chiral nanotubes exhibited better drug interactions when having bumpy defects. The π-π stacking and N-H…π electrostatic interactions were important components of the attractive drug-nanotube forces, enabling significant flattening of the nanotube to favor a dual strong interaction with the encapsulated drug, with DOX–CNT equilibrium distances of 3.1–3.9 Å. These results can contribute to the modeling of new drug-nanotube delivery systems.
The objective of this study was the optimization and comparison of two extraction methods for the determination of polycyclic aromatic hydrocarbons (PAHs) in wastewater (WW). A distribution study of the target compounds between the aqueous phase and the suspended particulate matter (SPM) has been performed in order to establish whether the analysis of both phases is necessary. In this sense, the feasibility of stir bar sorptive extraction (SBSE) and solid-phase extraction (SPE) for the determination of 24 PAHs in WW samples has been evaluated. The results demonstrated the suitability of SBSE to perform a comprehensive analysis of liquid samples containing high amounts of SPM, such as in the determination of PAHs in WWs. A gas chromatography triple quadrupole mass spectrometry (GC-QqQ-MS/MS) method has been also optimized for the separation and detection of the target compounds, avoiding the co-elution of some groups of isomers, such as benzo[b], [j] and [k] fluoranthenes and indene[1,2,3-cd]pyrene/dibenz[a,h]anthracene. For that purpose, a specific capillary column developed for PAH determination was used. The SBSE procedure was validated and adequate parameters (such as recovery, linearity, precision, limits of detection and quantification) were obtained. Finally, the validated method was applied to the analysis of real samples collected from an experimental WW treatment plant, detecting some PAHs at concentrations in the range 0.007-0.022 μg L(-1). 相似文献
The linear and two-dimensional infrared (2DIR) responses of the amide I vibrational mode in liquid formamide are investigated experimentally and theoretically using molecular dynamics simulations. The recent method based on the numerical integration of the Schr?dinger equation is employed to calculate the 2DIR spectra. Special attention is devoted to the interplay of the structural dynamics and the excitonic nature of the amide I modes in determining the optical response of the studied system. In particular, combining experimental data, simulated spectra and analysis of the simulated atomic trajectory in terms of a transition dipole coupling model, we provide a convincing explanation of the peculiar features of the 2DIR spectra, which show a substantial increase of the antidiagonal bandwidth with increasing frequency. We point out that, at variance with liquid water, the 2DIR spectral profile of formamide is determined more by the excitonic nature of the vibrational states than by the fast structural dynamics responsible for the frequency fluctuations. 相似文献