首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26698篇
  免费   649篇
  国内免费   149篇
化学   18143篇
晶体学   140篇
力学   613篇
数学   4762篇
物理学   3838篇
  2022年   203篇
  2021年   303篇
  2020年   355篇
  2019年   369篇
  2018年   257篇
  2017年   226篇
  2016年   554篇
  2015年   515篇
  2014年   559篇
  2013年   1422篇
  2012年   1286篇
  2011年   1571篇
  2010年   806篇
  2009年   789篇
  2008年   1383篇
  2007年   1424篇
  2006年   1371篇
  2005年   1315篇
  2004年   1149篇
  2003年   997篇
  2002年   902篇
  2001年   391篇
  2000年   309篇
  1999年   276篇
  1998年   302篇
  1997年   334篇
  1996年   378篇
  1995年   258篇
  1994年   306篇
  1993年   287篇
  1992年   264篇
  1991年   258篇
  1990年   196篇
  1989年   238篇
  1988年   244篇
  1987年   209篇
  1986年   205篇
  1985年   307篇
  1984年   347篇
  1983年   234篇
  1982年   381篇
  1981年   349篇
  1980年   328篇
  1979年   325篇
  1978年   335篇
  1977年   308篇
  1976年   292篇
  1975年   265篇
  1974年   263篇
  1973年   240篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
991.
The new anionic complexes [K(18-crown-6)][WH5(PMe2Ph)3], [K(1,10-diaza-18-crown-6)][WH5(PMe2Ph)3], [K(2,2,2-crypt)][ReH4(PMePh2)3], and [K(1,10-diaza-18-crown-6)][ReH4(PMePh2)3] were prepared by reaction of KH/crown or KH/crypt with the appropriate neutral polyhydride WH6(PMe2Ph)3 or ReH5(PMePh2)3. The rate of deprotonation of the rhenium hydride in THF is much greater for the reaction involving crypt compared with that of crown. The structure of [ReH4(PMePh2)3]- is distorted pentagonal bipyramidal as determined by an X-ray diffraction study of the crypt salt. No hydridic-protonic M-H...HN bonding is detected between the hydrides of the anionic hydrides and the amino hydrogens of the cations [K(1,10-diaza-18-crown-6)]+ suggesting that stronger M-H...K interactions are present. Acid dissociation constants Ka of polyhydride complexes in THF, approximately corrected for ion pairing, are determined by NMR in order to better understand the periodic trends of metal hydrides. The pKalphaTHF of (WH6(PMe2Ph)3/[WH5(PMe2Ph)3]-) is 42+/-4 according to the equilibrium set up by reacting WH6(PMe2Ph)3 with [K(2,2,2-crypt)][ReH6(PCy3)2]. The pKalphaTHF for ReH5(PMePh2)3 can be estimated as greater than the pKalphaTHF of 38 for HNPh2 and less than the pKalphaTHF of 41 for ReH7(PCy3)2. Reaction of the phosphazene base P4-tBu with ReH7(PCy3)2 gave an equilibrium with [HP4-tBu]+[ReH6(PCy3)2]- whereas reaction with WH6(PMe2Ph)3 gave an equilibrium with [HP4-tBu]+[WH5(PMe2Ph)3]-. From these and a related equilibrium, the pKalphaTHF of [HP4-tBu]+ is found to be 40+/-4. In general, neutral complexes MHx(PR3)n (M=W, Re, Ru, Os, Ir; n=3, 2) studied to date have pKalphaTHF values from 30 to 44 on going from phenyl-substituted to alkyl-substituted phosphine ligands whereas MHx(PR3)n+ (M=Re, Fe, Ru, Os, Co, Rh, Ni, Pd, Pt; n=4, 3), including diphosphine ligands ((PR3)2=PR2-PR2), have values from 12 to 23. From the equilibrium established from the reaction of [HP2-tBu][BPh4] and [K(2,2,2-crypt)][OP(OEt)2NPh], [HP2-tBu]+ was calculated to have a pKalphaTHF of 30+/-4. The equilibrium constant for the similar deprotonation reaction with [K(18-crown-6)][{ReH2(PMePh2)2}2(mu-H)3] confirmed this value.  相似文献   
992.
993.
A simple means is deduced for determining conditions for secondary particle formation in emulsion polymerization systems in systems where the amount of added surfactant is below the cmc. A new radical formed from initiator in the aqueous phase will undergo some polymerization with aqueous-phase monomer, but must have three possible eventual fates: aqueous-phase termination, entry into a preexisting particle, or creation of a new particle. The means for determining the onset and extent of secondary nucleation is to modify HUFT theory to take into account a successful model for entry [ Macromolecules, 24, 1629 (1991)] which states that entry occurs if and only if the aqueous-phase radical has achieved a critical degree of polymerization z. Particle formation below the cmc is by homogeneous/coagulative nucleation which (if coagulation is ignored) gives an upper bound to the rate of formation of precursor particles; these are of a degree of polymerization Jcrit > z. The resulting equations are readily solved, and require only a knowledge of the aqueous-phase propagation and termination rate coefficients (the latter is very high: ca. 109 dm3 mol−1 s−1 for termination between the very small radicals), z and jcrit. Easily applied means are given for estimating all these quantities. The treatment gives good accord with experimentally observed conditions for the onset of secondary nucleation in low-surfactant systems (including taking in situ micellization into account).  相似文献   
994.
The allylic rearrangement of trans-pinocarveol esters ( I ) to myrtenol esters ( II ), a reaction of interest in the chemistry of terpenes and cannabinoids, has been theoretically investigated. The intramolecular, cyclization-induced rearrangement results in equilibrium mixtures of the starting compounds and the products with the ratio of I vs. II in the equilibrium mixture being determined by their thermodynamic stabilities. The relative thermodynamic stabilities as reflected by calculated AM1 heats of formations (ΔHf) were determined for various I-II ester pairs. The study, in agreement with available experimental evidence, indicates that generally I , which contain an endocyclic double bond, are more stable and thus predominantly form following rearrangements. In two cases (acetate and pivalate) the stability is reversed. Calculations performed for similar structures, esters of 2-methylene cyclohexane-1-ol ( IV ) and 1-cyclohexene-1-methanol ( V ) gave similar results. Structural and electronic factors which might influence the stability of these compounds were examined. Interestingly, a correlation between thermodynamic stability and dipole moments was observed. © 1996 John Wiley & Sons, Inc.  相似文献   
995.
Basicities of the series of complexes CpIr(CO)(PR(3)) [PR(3) = P(p-C(6)H(4)CF(3))(3), P(p-C(6)H(4)F)(3), P(p-C(6)H(4)Cl)(3), PPh(3), P(p-C(6)H(4)CH(3))(3), P(p-C(6)H(4)OCH(3))(3), PPh(2)Me, PPhMe(2), PMe(3), PEt(3), PCy(3)] have been measured by the heat evolved (DeltaH(HM)) when the complex is protonated by CF(3)SO(3)H in 1,2-dichloroethane (DCE) at 25.0 degrees C. The -DeltaH(HM) values range from 28.0 kcal/mol for CpIr(CO)[P(p-C(6)H(4)CF(3))(3)] to 33.2 kcal/mol for CpIr(CO)(PMe(3)) and are directly related to the basicities of the PR(3) ligands in the complexes. For the more basic pentamethylcyclopentadienyl analogs, the -DeltaH(HM) values range from 33.8 kcal/mol for the weakest base CpIr(CO)[P(p-C(6)H(4)CF(3))(3)] to 38.0 kcal/mol for the strongest CpIr(CO)(PMe(3)). The nucleophilicities of the Cp'Ir(CO)(PR(3)) complexes were established from second-order rate constants (k) for their reactions with CH(3)I to give [Cp'Ir(CO)(PR(3))(CH(3))](+)I(-) in CD(2)Cl(2) at 25.0 degrees C. There is an excellent linear correlation between the basicities (DeltaH(HM)) and nucleophilicities (log k) of the CpIr(CO)(PR(3)) complexes. Only the complex CpIr(CO)(PCy(3)) with the bulky tricyclohexylphosphine ligand deviates dramatically from the trend. In general, the pentamethylcyclopentadienyl complexes react 40 times faster than the cyclopentadienyl analogs. However, they do not react as fast as predicted from electronic properties of the complexes, which suggests that the steric size of the Cp ligand reduces the nucleophilicities of the CpIr(CO)(PR(3)) complexes. In addition, heats of protonation (DeltaH(HP)) of tris(2-methoxyphenyl)phosphine, tris(2,6-dimethoxyphenyl)phosphine, and tris(2,4,6-trimethylphenyl)phosphine were measured and used to estimate pK(a) values for these highly basic phosphines.  相似文献   
996.
Analogous to the formation of CH(2)[(t-Bu)(2)C(6)H(2)O](2)P(Ph)(O(2)C(6)Cl(4)) (1), the new bicyclic tetraoxyphosphoranes CH(2)[(t-Bu)(2)C(6)H(2)O](2)P(Et)(O(2)C(6)Cl(4)) (3) and CH(2)[ClC(6)H(3)O](2)P(Ph)(O(2)C(6)Cl(4)) (4) were synthesized by the oxidative addition of the appropriate cyclic phosphines with o-tetrachlorobenzoquinone. For the formation of CH(2)[(t-Bu)(2)C(6)H(2)O](2)P(Ph)(O(2)C(2)Ph(2)) (2), a similar reaction was followed with the use of benzil (PhCOCOPh) in place of o-tetrachlorobenzoquinone. X-ray analysis of 1-3 revealed trigonal bipyramidal geometries and provided evidence for the first series of complexes in the absence of ring strain in which the least electronegative group, ethyl or phenyl, is located in an axial position, in violation of the electronegativity rule. Thus, the two oxygen-containing ring systems occupied two different sets of positions in the trigonal bipyramid (TBP) with the eight-membered rings at diequatorial sites. X-ray analysis of 4 revealed a trigonal bipyramidal geometry with electron-withdrawing chlorine substituents on each ring assumed the more conventional geometry with the rings occupying axial-equatorial positions and the phenyl group located in the remaining equatorial site. The fact that molecular mechanics calculations favorably reproduced the observed geometries suggests that a steric contribution associated with the ring tert-butyl groups for 1-3 is partly responsible in favoring diequatorial ring occupancy for the eight-membered ring. NMR data supported rigid pentacoordinated structures in solution at 23 degrees C. Phosphorane 1 crystallizes in the orthorhombic space group Fdd2 with a = 44.787(5) ?, b = 34.648(8) ?, c = 10.3709(9) ?, and Z = 16. Phosphorane 2 crystallizes in the orthorhombic space group Pna2(1) with a = 20.658(8) ?, b = 10.342(2) ?, c = 19.879(6) ?, and Z = 4. Phosphorane 3 crystallizes in the orthorhombic space group Pcmn with a = 9.807(2) ?, b = 16.632(4) ?, c = 23.355(3) ?, and Z = 4. Phosphorane 4 crystallizes in the monoclinic space group C2/c with a = 35.699(5) ?, b = 12.187(2) ?, c = 14.284(3) ?, beta = 107.08(1) degrees, and Z = 8. The final conventional unweighted residuals are 0.0395 (1), 0.0518 (2), 0.0540 (3), and 0.0868 (4).  相似文献   
997.
We report our synthesis of the C(26)-C(37) fragment of serine/threonine protein phosphatase PP1 and PP2A inhibitor calyculin C (1). Outlined in this paper are synthetic approaches to the two components based on disconnection at the C(33)-N(3) amide bond. We report the successful synthesis of the C(33)-C(37) aza-sugar derived from D-lyxose which was coupled onto a C(26)-C(32) aminooxazole originating from L-pyroglutamic acid. Elaboration of the resulting amide to a fully deprotected C(26)-C(37) fragment of calyculin C completed our synthesis. This provided an appropriate phosphonium salt for use in a Wittig olefination for joining both halves of the natural product.  相似文献   
998.
The palladium-catalyzed amidation of electron-deficient aryl chlorides proceeds readily in the presence of low CO pressures and a slight excess of an iodide salt. The rates of amidation are accelerated over those without added salt, and iodide is preferred over bromide or chloride. More electron-rich aryl chlorides were not effectively amidated, either with or without added iodide. We postulate that an intermediate anionic palladium(0) iodide complex is responsible for the enhanced reactivity.  相似文献   
999.
Separation of negatively charged carbohydrates by capillary electrophoresis   总被引:3,自引:0,他引:3  
Capillary electrophoresis (CE) has recently emerged as a highly promising technique consuming an extremely small amount of sample and capable of the rapid, high-resolution separation, characterization, and quantitation of analytes. CE has been used for the separation of biopolymers, including acidic carbohydrates. Since CE is basically an analytical method for ions, acidic carbohydrates that give anions in weakly acid, neutral, or alkaline media are often the direct objects of this method. The scope of this review is limited to the use of CE for the analysis of carbohydrates containing carboxylate, sulfate, and phosphate groups as well as neutral carbohydrates that have been derivatized to incorporate strongly acidic functionality, such as sulfonate groups.  相似文献   
1000.
Photolysis of compounds of the type [Re(CCMe2R)(OR′)2] (R = Me or Ph; OR′ = O′Bu, OCMe2(CF3), or OCMe(CF3)2) in benzene with a medium pressure mercury lamp yields compounds of the type [Re(OR′)2]2(μ-CCMe2R)2 in an intramolecular and irreversible manner. [Re(CCMe2R)(OR′)2]2 and [Re(OR′)2]2(μ-CCMe2R)2 (OR′ = O′Bu or OCMe2(CF3)2) both react with excess carbon monoxide in several solvents to afford the dimers [Re(OR′)2(CO)]2(μ-CCMe2R)2 quantitatively. An X-ray study of [Re(OtBu)2(CO)]2 (μ-CtBu)2 shows it to consist of two distorted trigonal bipyramids connected by two symmetrically bridging neopentylidyne ligands. The unbridged dimers of general formula [Re(CCMe2R)(OR′)2]2 do not react readily with simple substrates such as phosphines, olefins, or acetylenes, although [Re(CCMe2R)(OtBu)2]2 can be oxidized by iodine to yield Re(CCMe2R)(OtBu)2I2 in good yield. In contrast, {Re[OCMe(CF3)2]2}2(μ-CtBu)2 reacts with one equivalent of phenylacetylene to give a species in which one of the two bridging alkylidyne ligands is retained.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号