首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17698篇
  免费   436篇
  国内免费   125篇
化学   12373篇
晶体学   103篇
力学   347篇
数学   2982篇
物理学   2454篇
  2022年   91篇
  2021年   143篇
  2020年   184篇
  2019年   175篇
  2018年   141篇
  2017年   136篇
  2016年   285篇
  2015年   312篇
  2014年   317篇
  2013年   747篇
  2012年   764篇
  2011年   980篇
  2010年   489篇
  2009年   440篇
  2008年   887篇
  2007年   946篇
  2006年   976篇
  2005年   1026篇
  2004年   902篇
  2003年   748篇
  2002年   660篇
  2001年   225篇
  2000年   232篇
  1999年   175篇
  1998年   176篇
  1997年   224篇
  1996年   280篇
  1995年   191篇
  1994年   187篇
  1993年   181篇
  1992年   180篇
  1991年   159篇
  1990年   164篇
  1989年   139篇
  1988年   155篇
  1987年   162篇
  1986年   128篇
  1985年   278篇
  1984年   244篇
  1983年   188篇
  1982年   265篇
  1981年   217篇
  1980年   275篇
  1979年   242篇
  1978年   245篇
  1977年   247篇
  1976年   217篇
  1975年   176篇
  1974年   168篇
  1973年   165篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Epitope mapping is an important tool for the development of monoclonal antibodies, mAbs, as therapeutic drugs. Recently, a class of therapeutic mAb alternatives, adnectins, has been developed as targeted biologics. They are derived from the 10th type III domain of human fibronectin (10Fn3). A common approach to map the epitope binding of these therapeutic proteins to their binding partners is X-ray crystallography. Although the crystal structure is known for Adnectin 1 binding to human epidermal growth factor receptor (EGFR), we seek to determine complementary binding in solution and to test the efficacy of footprinting for this purpose. As a relatively new tool in structural biology and complementary to X-ray crystallography, protein footprinting coupled with mass spectrometry is promising for protein–protein interaction studies. We report here the use of fast photochemical oxidation of proteins (FPOP) coupled with MS to map the epitope of EGFR-Adnectin 1 at both the peptide and amino-acid residue levels. The data correlate well with the previously determined epitopes from the crystal structure and are consistent with HDX MS data, which are presented in an accompanying paper. The FPOP-determined binding interface involves various amino-acid and peptide regions near the N terminus of EGFR. The outcome adds credibility to oxidative labeling by FPOP for epitope mapping and motivates more applications in the therapeutic protein area as a stand-alone method or in conjunction with X-ray crystallography, NMR, site-directed mutagenesis, and other orthogonal methods. Figure
?  相似文献   
992.
The existence of gas‐phase electrostatic ion–ion interactions between protonated sites on peptides ([Glu] Fibrinopeptide B, Angiotensin I and [Asn1, Val5]‐Angiotensin II) and attaching anions (ClO4? and HSO4?) derived from strong inorganic acids has been confirmed by CID MS/MS. Evidence for ion–ion interactions comes especially from the product ions formed during the first dissociation step, where, in addition to the expected loss of the anion or neutral acid, other product ions are also observed that require covalent bond cleavage (i.e. H2O loss when several carboxylate groups are present, or NH3 loss when only one carboxylate group is present). For [[Glu] Fibrinopeptide B + HSO4]?, under CID, H2O water loss was found to require less energy than H2SO4 departure. This indicates that the interaction between HSO4? and the peptide is stronger than the covalent bond holding the hydroxyl group, and must be an ion–ion interaction. The strength and stability of this type of ion‐pairing interaction are highly dependent on the accessibility of additional mobile charges to the site. Positive mobile charges such as protons from the peptide can be transferred to the attaching anion to possibly form a neutral that may depart from the complex. Alternatively, an ion–ion interaction can be disrupted by a competing proximal additional negatively charged site of the peptide that can potentially form a salt bridge with the positively charged site and thereby facilitate the attaching anion's departure. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
993.
The objective of this work is to analyse the chemical stability of BaCe0.85Y0.15O3?δ –Ce0.85Y0.15O2?δ (BCY15–YDC15) composite materials at 600 °C and to compare the aforementioned chemical stability with that of pure BCY15. The composite powders were obtained by mixing together powders of BCY15 and YDC15 in the following volume fractions: 90 % BCY15 + 10 % YDC15, 70 % BCY15 + 30 % YDC15, 30 % BCY15 + 70 % YDC15, 20 % BCY15 + 80 % YDC15 and 10 % BCY15 + 90 % YDC15. After that both powders and sintered samples of the BCY15 and the BCY15–YDC15 composites were saturated in two different atmospheres at 600 °C: CO2/H2O (3.1 mol% H2O) and N2/H2O (46.8 mol% H2O). The effects of the previously mentioned atmospheres on the physicochemical properties of the samples were investigated via differential thermal analysis (DTA) combined with thermogravimetric analysis (TG). Furthermore, mass spectrometry was used to analyse the chemical composition of the gases released from the samples during the DTA–TG heating process. The surface and cross-section morphology of the samples were examined by scanning electron microscopy. Moreover, the phase composition of each sample was studied via X-ray Diffraction. From the combined analysis, it can be concluded that the addition of YDC15 in the composite samples leads to an increase in resistance against the corrosive effects of CO2. Furthermore, it was determined that all samples maintain stability in the presence of H2O at 600 °C.  相似文献   
994.
In this work, a reticulated vitreous carbon electrode (RVCE, 96.5 % porosity, 24 cm?1) was modified with 2-anthraquinonyl groups to electrocatalytically reduce dissolved oxygen in neutral aqueous solution (0.1 M phosphate buffer solution supported with 3 M potassium chloride, pH of 6.7) to hydrogen peroxide (H2O2) at 25 °C under atmospheric pressure. The obtained current density was ca. 3 mA cm?2. For the first time, the oxygen reduction was investigated on a novelly designed RVCE housed in a gravity-feed flow system. Fractional current conversions obtained on the RVC flow cell were compared and contrasted with those on a two-dimensional electrode, viz. a tubular flow electrode. The modified-on catalyst has the benefit in terms of easy separation of the product from the catalyst. The in situ generated low concentration of H2O2 provides potential applications to water purification processes and disinfection for water and food.  相似文献   
995.
Carbophilic catalysts that are based on AuI allow a host of different nucleophiles to be added across various π systems. 1 – 3 Although many of these reactions are thought to proceed via gold carbenoids, the challenge to observe and characterize these putative intermediates has basically been unmet. 4 The current mechanistic interpretation therefore largely relies on indirect evidence and computational data, some of which are subject to debate. 5 In an attempt to fill this gap, we pursued a potential route to gold carbenoids by formal transmetalation of chromium or tungsten Fischer carbene complexes with [LAu]+. Whereas this transformation proceeds with exceptional ease as long as a stabilizing heteroelement is present on the carbene center, it stops half‐way in its absence. Rather unusual bimetallic arrays are formed, which allow the charge density to delocalize over several positions. The obvious difficulty of releasing an “unstabilized” gold carbenoid has potential mechanistic implications for the understanding of π‐acid catalysis in general.  相似文献   
996.
Quantum dots (QDs) offer new and versatile ways to harvest light energy. However, there are few examples involving the utilization of QDs in organic synthesis. Visible‐light irradiation of CdSe QDs was found to result in virtually quantitative coupling of a variety of thiols to give disulfides and H2 without the need for sacrificial reagents or external oxidants. The addition of small amounts of nickel(II) salts dramatically improved the efficiency and conversion through facilitating the formation of hydrogen atoms, thereby leading to faster regeneration of the ground‐state QDs. Mechanistic studies reveal that the coupling reaction occurs on the QD surfaces rather than in solution and offer a blueprint for how these QDs may be used in other photocatalytic applications. Because no sacrificial agent or oxidant is necessary and the catalyst is reusable, this method may be useful for the formation of disulfide bonds in proteins as well as in other systems sensitive to the presence of oxidants.  相似文献   
997.
In contrast to the continuously growing number of methods that allow for the efficient α‐functionalization of amines, few strategies exist that enable the direct functionalization of amines in the β‐position. A general redox‐neutral strategy is outlined for amine β‐functionalization and α,β‐difunctionalization that utilizes enamines generated in situ. This concept is demonstrated in the context of preparing polycyclic N,O‐acetals from simple 1‐(aminomethyl)‐β‐naphthols and 2‐(aminomethyl)‐phenols.  相似文献   
998.
The trivalent metal cations Al3+, Cr3+, and Fe3+ were each introduced, together with Sc3+, into MIL‐100(Sc,M) solid solutions (M=Al, Cr, Fe) by direct synthesis. The substitution has been confirmed by powder X‐ray diffraction (PXRD) and solid‐state NMR, UV/Vis, and X‐ray absorption (XAS) spectroscopy. Mixed Sc/Fe MIL‐100 samples were prepared in which part of the Fe is present as α‐Fe2O3 nanoparticles within the mesoporous cages of the MOF, as shown by XAS, TGA, and PXRD. The catalytic activity of the mixed‐metal catalysts in Lewis acid catalysed Friedel–Crafts additions increases with the amount of Sc present, with the attenuating effect of the second metal decreasing in the order Al>Fe>Cr. Mixed‐metal Sc,Fe materials give acceptable activity: 40 % Fe incorporation only results in a 20 % decrease in activity over the same reaction time and pure product can still be obtained and filtered off after extended reaction times. Supported α‐Fe2O3 nanoparticles were also active Lewis acid species, although less active than Sc3+ in trimer sites. The incorporation of Fe3+ into MIL‐100(Sc) imparts activity for oxidation catalysis and tandem catalytic processes (Lewis acid+oxidation) that make use of both catalytically active framework Sc3+ and Fe3+. A procedure for using these mixed‐metal heterogeneous catalysts has been developed for making ketones from (hetero)aromatics and a hemiacetal.  相似文献   
999.
The use of flow photochemistry and its apparent superiority over batch has been reported by a number of groups in recent years. To rigorously determine whether flow does indeed have an advantage over batch, a broad range of synthetic photochemical transformations were optimized in both reactor modes and their yields and productivities compared. Surprisingly, yields were essentially identical in all comparative cases. Even more revealing was the observation that the productivity of flow reactors varied very little to that of their batch counterparts when the key reaction parameters were matched. Those with a single layer of fluorinated ethylene propylene (FEP) had an average productivity 20 % lower than that of batch, whereas three‐layer reactors were 20 % more productive. Finally, the utility of flow chemistry was demonstrated in the scale‐up of the ring‐opening reaction of a potentially explosive [1.1.1] propellane with butane‐2,3‐dione.  相似文献   
1000.
The controlled crystallization of enantiomers of an organic compound (a cyclic phosphoric acid derivative) on templated micro‐patterned functionalised surfaces is demonstrated. Areas where a complementary chiral thiol has been located were effective heterogeneous nucleation centres when a solution of the compound is evaporated slowly. Various organic solvents were employed, which present a challenge with respect to other examples when water is used. The solvent and the crystallization method have an important influence on the crystal growth of these compounds. When chloroform was employed, well‐defined crystals grow away from the surface, whereas crystals grow in the plane from solutions in isopropanol. In both cases, nucleation is confined to the polar patterned regions of the surface, and for isopropanol growth is largely limited within the pattern, which shows the importance of surface chemistry for nucleation and growth. The apparent dependence on the enantiomer used in the latter case could imply stereo‐differentiation as a result of short‐range interactions (the templating monolayer is disordered, even at the nanometre scale). The size of the pattern of chiral monolayer also determines the outcome of the crystallization; 5 μm dots are most effective. Despite the low surface tension of the samples (relative to the high surface tension of water), differential solvation of the polar and hydrophobic layers of the solvents allows crystallization in the polar regions of the monolayer, therefore the polarity of the regions in which heterogeneous nucleation takes place is indeed very important. Despite the complex nature of the crystallization process, these results are an important step towards to the use of patterned surfaces for heterogeneous selective nucleation of enantiomers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号