首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1580篇
  免费   59篇
  国内免费   16篇
化学   927篇
晶体学   18篇
力学   35篇
数学   384篇
物理学   291篇
  2024年   5篇
  2023年   14篇
  2022年   36篇
  2021年   43篇
  2020年   33篇
  2019年   43篇
  2018年   42篇
  2017年   51篇
  2016年   60篇
  2015年   43篇
  2014年   99篇
  2013年   143篇
  2012年   110篇
  2011年   96篇
  2010年   85篇
  2009年   65篇
  2008年   99篇
  2007年   84篇
  2006年   81篇
  2005年   53篇
  2004年   62篇
  2003年   49篇
  2002年   41篇
  2001年   19篇
  2000年   19篇
  1999年   19篇
  1998年   7篇
  1997年   6篇
  1996年   9篇
  1995年   9篇
  1994年   8篇
  1993年   9篇
  1992年   10篇
  1991年   7篇
  1990年   5篇
  1989年   11篇
  1988年   9篇
  1987年   7篇
  1986年   3篇
  1985年   7篇
  1984年   7篇
  1983年   7篇
  1982年   15篇
  1980年   7篇
  1979年   4篇
  1978年   5篇
  1977年   2篇
  1976年   2篇
  1972年   1篇
  1971年   1篇
排序方式: 共有1655条查询结果,搜索用时 15 毫秒
31.
The synthesis of ZnO nanocrystals is reported using a hydrothermal chemical growth technique combined with 248 nm nanosecond excimer laser heating at fluences in the range 0-390 mJ cm−2. The effect of laser heating in controlling the morphology of the nanocrystals is investigated using optical spectroscopy and electron microscopy characterization. Laser heating is shown to allow control of the crystal morphology from nanoparticles to nanorods as well as to modify the size distributions. The results indicate that not only does the laser accelerate the growth of nanocrystals, but can also produce crystals with a narrow size distribution possibly via photothermal size selection. An initial study of electrical conduction properties of ZnO nanocrystal thin films is also discussed.  相似文献   
32.
The structural and electronic properties of group III rich In0.53Ga0.47As(001) have been studied using scanning tunneling microscopy/spectroscopy (STM/STS). At room temperature (300 K), STM images show that the In0.53Ga0.47As(001)–(4 × 2) reconstruction is comprised of undimerized In/Ga atoms in the top layer. Quantitative comparison of the In0.53Ga0.47As(001)–(4 × 2) and InAs(001)–(4 × 2) shows the reconstructions are almost identical, but In0.53Ga0.47As(001)–(4 × 2) has at least a 4× higher surface defect density even on the best samples. At low temperature (77 K), STM images show that the most probable In0.53Ga0.47As(001) reconstruction is comprised of one In/Ga dimer and two undimerized In/Ga atoms in the top layer in a double (4 × 2) unit cell. Density functional theory (DFT) simulations at elevated temperature are consistent with the experimentally observed 300 K structure being a thermal superposition of three structures. DFT molecular dynamics (MD) show the row dimer formation and breaking is facilitated by the very large motions of tricoodinated row edge As atoms and z motion of In/Ga row atoms induced changes in As–In/Ga–As bond angles at elevated temperature. STS results show there is a surface dipole or the pinning states near the valence band (VB) for 300 K In0.53Ga0.47As(001)–(4 × 2) surface consistent with DFT calculations. DFT calculations of the band-decomposed charge density indicate that the strained unbuckled trough dimers being responsible for the surface pinning.  相似文献   
33.
We present an initial demonstration of simultaneous velocity and temperature mapping in gaseous flow fields using a new nitric oxide planar laser-induced fluorescence-based method. The vibrationally excited NO monitoring (VENOM) technique is an extension of two-component velocimetry using vibrationally excited NO generated from the photodissociation of seeded NO(2) [Appl. Opt. 48, 4414 (2009)], where the two sequential fluorescence images are obtained probing two different rotational states to provide both velocity and temperature maps. Comparisons to computational fluid dynamics simulations show that the initial VENOM measurements provide good velocity and temperature maps in the relatively high-density regions of the flow, where the rms uncertainties are approximately 5% for velocity and 9% for temperature.  相似文献   
34.
High fidelity polymerases are efficient catalysts of phosphodiester bond formation during DNA replication or repair. We interpret molecular dynamics simulations of a polymerase bound to its substrate DNA and incoming nucleotide using a quasiharmonic model to study the effect of external forces applied to the bound DNA on the kinetics of phosphoryl transfer. The origin of the force dependence is shown to be an intriguing coupling between slow, delocalized polymerase-DNA modes and fast catalytic site motions. Using noncognate DNA substrates we show that the force dependence is context specific.  相似文献   
35.
36.
Bimetallic SCN ligand based single crystals of manganese mercury thiocyanate (MMTC), cadmium mercury thiocyanate (CMTC) and zinc cadmium thiocyanate (ZCTC) are grown by slow solvent evaporation technique. The growth mechanism and surface features are investigated by optical microscopic techniques such as scanning electron microscopy (SEM) and atomic force microscopy (AFM). The laser induced surface damage measurements were carried out using a Q-switched Nd:YAG laser at 1064 nm with laser beam of 1.0 Hz and pulse duration 25 ps. The laser damage threshold values of MMTC, CMTC and ZCTC are found to be 15.9, 22.9 and 19.7 GW/cm2, respectively. The SEM analysis of MMTC reveals the formation of elongated dendrite growth pattern caused by the fluctuations of Mn and Hg metal ligands when thiocyanate (SCN) bridges them. The etching study indicates the occurrence of different types of etch pit patterns like terraced triangles, pillars, pyramids and rods. The AFM images confirm the formation of three major hillocks with cavities in MMTC. The measured roughness values for CMTC crystal are very much lower than that of MMTC.  相似文献   
37.
P. Ravi 《Molecular physics》2013,111(7):647-655
Azodinitro- and dinitroethylene-bridged bitriazoles are of interest in the contest of high explosives, and were found to have true local energy minima at the B3LYP/aug-cc-pVDZ level of theory. The optimised structures, vibrational frequencies and thermodynamic quantities for bitriazoles were obtained in the ground state. Kamlet–Jacobs equations were used to evaluate the performance of bitriazoles based on the predicted density and the calculated heat of explosion. Detonation properties (D = 8.12 to 9.23 km s?1 and P = 28.0 to 39.83 GPa) of bitriazoles were found to be promising compared with those of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX, D = 8.75 km s?1 and P = 34.7 GPa) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX, D = 8.96 km s?1 and P = 35.96 GPa). The fusion of azoles particularly appears to be a promising area for investigation, since it may lead to the desirable consequences of higher heat of explosion, higher density and thus improved detonation performance.  相似文献   
38.
Fluid viscous dampers have been widely used for suppression of high velocity shocks. While linear fluid viscous dampers have been used for a long time, nonlinear fluid viscous dampers show considerable promise due to their superior energy dissipation characteristics and significant reduction in the damper force compared to a linear fluid viscous damper for the same peak displacement. This paper presents results from experimental study to characterize fluid viscous dampers when subjected to half-cycle sine shock excitation. The mathematical formulation and a numerical study to evaluate the relative performance of structures with fluid viscous dampers subjected to short-duration shock (impulse) loading are also discussed. The influence of damper nonlinearity (α) and the supplemental damping ratio (ξsd) on response has been investigated. The supplemental damping ratio of nonlinear fluid viscous dampers when subjected to shock excitation is found by equivalent linearization using the concept of equal energy dissipation. The paper also presents some design charts, which can be used for preliminary decisions on parameters of nonlinear dampers to be used in design.  相似文献   
39.
40.
In this study, the photocatalytic dye degradation efficiency of KTi0.5Te1.5O6 synthesized through solid‐state method was enhanced by cation (Ag+/Sn+2) doping at potassium site via ion exchange method. As prepared materials were characterized by XRD, SEM‐EDS, IR, TGA and UV–Vis Diffuse reflectance spectroscopic (DRS) techniques. All the compounds were crystallized in cubic lattice with space group. The bandgap energies of parent, Ag+‐ and Sn+2‐doped KTi0.5Te1.5O6 materials obtained from DRS profiles were found to be 2.96, 2.55 and 2.40 eV, respectively. Photocatalytic efficiency of parent, Ag+‐ and Sn+2‐doped materials was evaluated against the degradation of methylene blue (MB) and methyl violet (MV) dyes under visible light irradiation. The Sn+2‐doped KTi0.5Te1.5O6 showed higher activity toward the degradation of both MB and MV dyes and its higher activity is ascribed to the lower bandgap energy compared to the parent and Ag+‐doped KTi0.5Te1.5O6. The mechanistic degradation pathway of methylene blue (MB) was studied in the presence of Sn2+‐doped KTi0.5Te1.5O6. Quenching experiments were performed to know the participation of holes, super oxide and hydroxyl radicals in the dye degradation process. The stability and reusability of the catalysts were studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号