首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   952篇
  免费   62篇
  国内免费   3篇
化学   547篇
晶体学   11篇
力学   28篇
数学   208篇
物理学   223篇
  2024年   7篇
  2023年   11篇
  2022年   37篇
  2021年   51篇
  2020年   34篇
  2019年   29篇
  2018年   40篇
  2017年   36篇
  2016年   48篇
  2015年   33篇
  2014年   39篇
  2013年   85篇
  2012年   76篇
  2011年   77篇
  2010年   53篇
  2009年   46篇
  2008年   39篇
  2007年   28篇
  2006年   30篇
  2005年   20篇
  2004年   21篇
  2003年   22篇
  2002年   17篇
  2001年   9篇
  2000年   9篇
  1999年   7篇
  1998年   10篇
  1997年   6篇
  1996年   7篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   4篇
  1986年   3篇
  1985年   11篇
  1984年   6篇
  1983年   2篇
  1982年   4篇
  1981年   4篇
  1980年   7篇
  1979年   3篇
  1978年   5篇
  1976年   6篇
  1975年   3篇
  1971年   2篇
  1969年   2篇
  1938年   1篇
排序方式: 共有1017条查询结果,搜索用时 15 毫秒
151.
Cobalt ferrite (CoFe2O4) nano-particles have been synthesized successfully and we studied the effect of temperature on them. The particles have been annealed at different temperatures ranging from 373 to 1173 K. Significant effect on the physical parameters like crystalline phase, crystallite size, particle size, lattice strain and magnetic properties of the nano-particles has been investigated. The studies have been carried out using a powder X-ray diffractometer (XRD), a transmission electron microscope (TEM) and a vibrating sample magnetometer (VSM). A thorough study of the variation of specific surface area and particle size with annealing is presented here, with their effects on saturation magnetization.  相似文献   
152.
Journal of Thermal Analysis and Calorimetry - In the present framework, the simultaneous effect of rotation, magnetic field, heat source and local thermal non-equilibrium (LTNE) is investigated on...  相似文献   
153.
Research on Chemical Intermediates - We report the synthesis of 1, 5, 10 wt% cobalt oxide/reduced graphene oxide (CoO–RGO) composite materials by a simple solvothermal method. We assessed...  相似文献   
154.
155.
Specimens of iron-doped indium oxide (In1-xFex)2O3 with x?=?0.015, 0.03, 0.045 and 0.06, amalgamated through a traditional solid-state reaction method followed by H2/air sintering, were characterised using an X-ray diffractometer (XRD), a vibrating sample magnetometer (VSM), and a scanning electron microscope (SEM) to investigate their structural, magnetic and morphological properties respectively. According to XRD plots, all the specimens exhibit cubic bixbyite structures along with ancillary phases. Magnetic assessment showed that In2O3 has a negative susceptibility, exhibiting diamagnetic behaviour at room temperature. The doping of Fe ions induces ferromagnetic (FM) ordering, which is enhanced with increasing doping content. The strength of the magnetisation increases when the specimens are exposed to H2 but is reduced on further air sintering. A bound magnetic polaron (BMP) model is successfully fitted to the observed FM data involving localised carriers and magnetic cations. A multivariate assessment viz. a hierarchical cluster analysis (HCA) was used to corroborate and strengthen the experimental determined magnetic properties. A homogeneous particle distribution was observed in all SEM micrographs and is validated through MATLAB-based simulation by applying a watershed segmentation algorithm. Surface plots also confirm the change in magnetic properties with increase in doping concentration.  相似文献   
156.
In this work, we investigated terpyridine (tpy)/Zn(II) complexation for the crosslinking of polymeric micelles of the branched poly(ethylene oxide)–poly(propylene oxide) block copolymer Tetronic® 1107 (T1107) in water and produce physically stable amphiphilic luminescent nanogels. Nanoparticles displayed a size of 235 ± 25 and 318 ± 57 nm before and after Zn(II) crosslinking, respectively, as measured by dynamic light scattering. High-resolution scanning electron microscopy analysis revealed the multimicellar nature of the crosslinked nanoparticles. In addition, Zn(II) complexation prevented nanoparticle disassembly after extreme dilution below the critical micellar concentration and reduced the minimum concentration required for the reverse thermal gelation of concentrated aqueous T1107 systems. The cell compatibility and uptake were initially assessed in the murine macrophage cell line RAW 264.7. Results showed that complexation increases the cell compatibility of the nanoparticles with respect to the non-complexed counterparts. In addition, non-crosslinked nanoparticles accumulated in the cell membrane, while the complexed ones were internalized, as observed by confocal laser scanning fluorescence microscopy. Then, the antiproliferative activity of the crosslinked nanoparticles was confirmed in the rhabdomyosarcoma cell line Rh30; their inhibitory concentration 50 (IC50) being 101 μg/mL (6.7 μM). Finally, the encapsulation and release of the hydrophobic antiretroviral efavirenz was characterized in vitro. Complexation slightly reduced the release kinetics with respect to the pristine nanoparticles. Overall results demonstrate the promise of this simple modification strategy to produce amphiphilic nanogels with a set of advantageous physicochemical, optical, and biological properties.  相似文献   
157.
The macrostructures of synthetic polymers are essentially the complete molecular chain architectures, including the types and amounts of constituent short‐range microstructures, such as the regio‐ and stereosequences of the inserted monomers, the amounts and sequences of monomers found in co‐, ter‐, and tetra‐polymers, branching, inadvertent, and otherwise, etc. Currently, the best method for characterizing polymer microstructures uses high field, high resolution 13C‐nuclear magnetic resonance (NMR) spectroscopy observed in solution. However, even 13C‐NMR is incapable of determining the locations or positions of resident polymer microstructures, which are required to elucidate their complete macrostructures. The sequences of amino acid residues in proteins, or their primary structures, cannot be characterized by NMR or other short‐range spectroscopic methods, but only by decoding the DNA used in their syntheses or, if available, X‐ray analysis of their single crystals. Similarly, there are currently no experimental means to determine the sequences or locations of constituent microstructures along the chains of synthetic macromolecules. Thus, we are presently unable to determine their macrostructures. As protein tertiary and quaternary structures and their resulting ultimate functions are determined by their primary sequence of amino acids, so too are the behaviors and properties of synthetic polymers critically dependent on their macrostructures. We seek to raise the consciousness of both synthetic and physical polymer scientists and engineers to the importance of characterizing polymer macrostructures when attempting to develop structure–property relations. To help achieve this task, we suggest using the electrical birefringence or Kerr effects observed in their dilute solutions. The molar Kerr constants of polymer solutes contributing to the birefringence of their solutions, under the application of a strong electric field, are highly sensitive to both the types and locations of their constituent microstructures. As a consequence, we may begin to characterize the macrostructures of synthetic polymers by means of the Kerr effect. To simplify implementation of the Kerr effect to characterize polymer macrostructures, we suggest that NMR first be used to determine the types and amounts of constituent microstructures present. Subsequent comparison of observed Kerr effects with those predicted for different microstructural locations along the polymer chains can then be used to identify the most likely macrostructures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 155–166  相似文献   
158.
This research is made to visualize the boundary layer flow by a curved stretching sheet embedded in porous medium. The geometry is bended(curved), therefore the curvilinear coordinates are used to model the present problem.Fluid is electrically conducting with the presence of uniform magnetic field. The governing non-linear partial differential equation reduces to non-linear ordinary differential equations by using the dimensionless suitable transformations. The numerical solutions are obtained by using the method bvp4c from MATLAB. The effects of curvature parameter, nondimensional magnetic parameter, and porosity parameter on the velocity field and skin friction coefficient are examined.The skin friction profile enhances with enhancing the values of porosity and magnetic parameter. Comparison of the present results with the existing results in the literature for the flat surface is also given.  相似文献   
159.
Russian Journal of Organic Chemistry - The present work describes the synthesis of 4-amino-6-(2-benzylidenehydrazinyl)-pyrimidine-5-carbonitrile derivatives,...  相似文献   
160.
Research on Chemical Intermediates - Novel tri-amine functionalized graphene oxide (TGO) material was synthesized using organo silane {3-[2-(2-amino ethyl amino) ethyl amino] propyl trimethoxy...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号