首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   298篇
  免费   1篇
  国内免费   3篇
化学   219篇
晶体学   3篇
力学   5篇
数学   45篇
物理学   30篇
  2024年   1篇
  2023年   2篇
  2022年   12篇
  2021年   10篇
  2020年   14篇
  2019年   8篇
  2018年   10篇
  2017年   4篇
  2016年   12篇
  2015年   11篇
  2014年   13篇
  2013年   23篇
  2012年   17篇
  2011年   20篇
  2010年   14篇
  2009年   12篇
  2008年   11篇
  2007年   10篇
  2006年   14篇
  2005年   8篇
  2004年   14篇
  2003年   5篇
  2002年   8篇
  2000年   5篇
  1999年   1篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1970年   2篇
  1948年   2篇
  1944年   4篇
  1943年   6篇
  1942年   1篇
  1939年   5篇
  1938年   2篇
  1937年   1篇
  1936年   3篇
  1935年   3篇
  1934年   3篇
  1933年   4篇
  1932年   2篇
排序方式: 共有302条查询结果,搜索用时 15 毫秒
241.
Simple stacks of perylenediimides (PDIs) grown directly on solid surfaces are an intriguing starting point for the construction of multicomponent architectures because their intrinsic activity is already very high. The ability of PDI stacks to efficiently generate photocurrent originates from the strong absorption of visible light and the efficient transport of both electrons and holes after generation with light. The objective of this study was to explore whether or not the excellent performance of these remarkably simple single‐channel photosystems could be further improved in more sophisticated multicomponent architectures. We report that the directional construction of strings of anions or cations along the PDI stacks does not significantly improve their activity; that is, the intrinsic activity of PDI stacks is too high to yield ion‐gated photosystems. The directional construction of electron‐ and hole‐transporting stacks of naphthalenediimides (NDIs) and oligothiophenes along the central PDI stack did not improve photocurrent generation under standard conditions either. However, the activity of double‐channel photosystems increased with increasing thickness, whereas increasing charge recombination with single‐channel PDI stacks resulted in decreasing activity with increasing length. Most efficient long‐distance charge transport was found with double‐channel photosystems composed of PDIs and NDIs. This finding suggests that over long distances, PDI stacks transport holes better than electrons, at least under the present conditions. Triple‐channel photosystems built around PDI stacks with oligothiophenes and triphenylamines were less active, presumably because hole mobility in the added channels was inferior to that in the original PDI stacks, thus promoting charge recombination.  相似文献   
242.
Surface‐enhanced Raman scattering (SERS) effect was used to demonstrate ultrasensitive optical detection of nucleic acids. In this work, the SERS spectra of seven genomic DNAs from leaves of Arnica montana (L.), Fam. Compositae, Astragalus peterfii (Jáv.), Fam. Fabaceae, Kalanchoe x hybrida, Fam. Crassulaceae, strawberry (Fragaria x ananassa Duch.), Fam. Rosaceae, carnation (Dianthus caryophyllus L.), Fam. Caryophyllaceae, apple (Malus domestica Borkh.), Fam. Rosaceae and Persian violet (Exacum affine Balf.), Fam. Gentianaceae were analyzed in the wavenumber range 200–1800 cm−1. SERS signatures, spectroscopic band assignments and structural interpretations of these plant genomic DNAs are reported. SERS spectra of nucleic acids are compared here with caution, because these signals are time‐dependent. The SERS spectra corresponding to DNA from Arnica, Dianthus, Fragaria and Kalanchoe leaves show well‐resolved, accurate bands, providing thus a high molecular structural information content. Based on this work, specific plant DNA–ligand interactions or DNA structural changes induced by plant stress conditions associated with their natural environment might be further investigated using SERS spectroscopy. Besides, this study will generate information that is valuable in the development of label‐free DNA‐based nanosensors for chemical probing in the living cell. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
243.
We investigate the motion of pedestrians through obscure corridors where the lack of visibility (due to smoke, fog, darkness, etc.) hides the precise position of the exits. We focus our attention on a set of basic mechanisms, which we assume to be governing the dynamics at the individual level. Using a lattice model, we explore the effects of non-exclusion on the overall exit flux (evacuation rate). More precisely, we study the effect of the buddying threshold (of no-exclusion per site) on the dynamics of the crowd and investigate to which extent our model confirms the following pattern revealed by investigations on real emergencies: If the evacuees tend to cooperate and act altruistically, then their collective action tends to favor the occurrence of disasters. The research reported here opens many fundamental questions and should be seen therefore as a preliminary investigation of the very complex behavior of the people and their motion in dark regions.  相似文献   
244.
    
A new method is described, by which N-functionalized cyclopentadienide ligands are synthesized via the nucleophilic substitution of sodium cyclopentadienide onto Katritzky's (benzotriazolyl) compounds. This route enables the introduction of bulky and basic amines, separated from the cyclopentadienyl ring by a methylene spacer. The method thus represents a valuable alternative to the general fulvene route. The resulting ligands have been coordinated to titanium and zirconium, producing a series of discrete metallocene derivatives with a pendant amine arm. These complexes are extremely sensitive towards moisture, but they can easily be converted into benchtop-stable ammonium chloride derivatives. The ligands and their complexes have been fully characterized by NMR and IR spectroscopy, elemental analysis and/or high resolution ESI-MS. The solid-state structures of ten complexes have been established by single-crystal X-ray diffraction analysis.  相似文献   
245.
246.
    
A sensitive and validated liquid chromatography with mass spectrometry method was developed for the enantioseparation of the racemic mixture of pomalidomide, a novel, second‐generation immunomodulatory drug, using β‐cyclodextrin‐bonded stationary phases. Four cyclodextrin columns (β‐, hydroxypropyl‐β‐, carboxymethyl‐β‐, and sulfobutyl‐β‐cyclodextrin) were screened and the effects of eluent composition, flow rate, temperature, and organic modifier on enantioseparation were studied. Optimized parameters, offering baseline separation (resolution = 2.70 ± 0.02) were the following: β‐cyclodextrin stationary phase, thermostatted at 15°C, and mobile phase consisting of methanol/0.1% acetic acid 10:90 v/v, delivered with 0.8 mL/min flow rate. For the optimized parameter at multiple reaction monitoring mode 274.1–201.0 transition with 20 eV collision energy and 100 V fragmentor voltage the limit of detection and limit of quantitation were 0.75 and 2.00 ng/mL, respectively. Since enantiopure standards were not available, elution order was determined upon comparison of the circular dichroism signals of the separated pomalidomide enantiomers with that of enantiopure thalidomide. The mechanisms underlying the chiral discrimination between the enantiomers were also investigated. Pomalidomide‐β‐cyclodextrin inclusion complex was characterized using nuclear magnetic resonance spectroscopy and molecular modeling. The thermodynamic aspects of chiral separation were also studied.  相似文献   
247.
    
In the view of producing environmentally friendly materials without compromising properties, new composites containing polypropylene as a matrix and eucalyptus wood, with or without 15% of polylactic acid, were melt processed. In order to improve compatibility between components, a chemical modification of wood with toluene-2,4-diisocyanate (TDI) was realized and evidenced by changes in FT-IR and XPS spectra. The morphological, mechanical, and thermal characterizations of the obtained composites were evaluated before and after accelerating weathering. The results showed that the material comprising 15% TDI-modified wood, PP, and 15% PLA exhibited the best properties.  相似文献   
248.
    
Hexaazatrinaphthylene (HATNA) derivatives with six alkylsulfanyl chains of different length (hexyl, octyl, decyl and dodecyl) have been designed to obtain new potential electron-carrier materials. The electron-deficient nature of these compounds has been demonstrated by cyclic voltammetry. Their thermotropic behaviour has been studied by means of differential scanning calorimetry and polarised optical microscopy. The supramolecular organisation of these discotic molecules has been explored by temperature-dependent X-ray diffraction on powders and oriented samples. In addition to various liquid crystalline columnar phases (Col(hd), Col(rd)), an anisotropic plastic crystal phase is demonstrated to exist. The charge-carrier mobilities have been measured with the pulse-radiolysis time-resolved microwave-conductivity technique. They are found to be higher in the crystalline than in the liquid crystalline phases, with maximum values of approximately 0.9 and 0.3 cm(2) V(-1) s(-1), respectively, for the decylsulfanyl derivative. Mobilities strongly depend on the nature of the side chains.  相似文献   
249.
    
Direct dyes are likely to self-associate in aqueous solutions. Here, we present the aggregation characteristics of three trisazo direct dyes investigated using a procedure, which combines computational and experimental approaches. The geometric features of the molecules and their aggregates were elucidated by molecular modeling and optimization. The relative energies specific for the aggregation process yielded the optimum number of molecules forming an aggregate: two for AHDS dye and three for SDH and AIDS dyes. The results were further confirmed by using spectrometric determination and mathematical analysis. Accordingly, molecular aggregation was studied in aqueous solutions as a function of dye concentration (10?6–10?3 mol/l) and solution pH (4–10). As the dye concentration increased, shifts in absorption spectra were observed, suggesting the formation of aggregates. The pH variation produced a change in the spectral maximum, confirming the aggregation. The mathematical processing of the absorption spectrum data confirmed the number of chemical species of each aggregate as resulted from computational calculations.  相似文献   
250.
    
Next generations of microelectronic devices request further miniaturized systems. In this context, photolithography is a key step and many efforts have been paid to develop new irradiation setup and materials compatible with sub‐100 nm resolution. Among other resist platforms, chemically amplified photoresists (CAR) are widely used because of their excellent properties in terms of resolution, sensitivity, and etching resistance. However, low information on the impact of the polymer structure on the lithography performance is available. CAR with well‐controlled polymer structures were thus prepared and investigated. In particular, the impact of the polymer structure on the lithographic performance was evaluated. Linear and branched polymers with various molecular weights and polydispersities were compared. We focused on the dependency of the photosensitivity of the resist with the structural parameters. These results allow further understanding the fundamental phenomena involved by 193‐nm irradiation. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1271–1277, 2010  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号