Organodihydridoelement anions of germanium and tin were reacted with metallocene dichlorides of Group 4 metals Ti, Zr and Hf. The germate anion [Ar*GeH2]− reacts with hafnocene dichloride under formation of the substitution product [Cp2Hf(GeH2Ar*)2]. Reaction of the organodihydridostannate with metallocene dichlorides affords the reduction products [Cp2M(SnHAr*)2] (M=Ti, Zr, Hf). Abstraction of a hydride substituent from the titanium bis(hydridoorganostannylene) complex results in formation of cation [Cp2M(SnAr*)(SnHAr*)]+ exhibiting a short Ti–Sn interaction. (Ar*=2,6-Trip2C6H3, Trip=2,4,6-triisopropylphenyl). 相似文献
The following account summarises recent developments in the area of palladium-catalysed telomerisation and dimerisation reactions of 1,3-dienes. The most active types of catalyst, palladium-carbene complexes, were tested in pilot plant and proved to be industrially viable. 相似文献
Measurements of the major cations Ca and Mg by the technique of diffusive gradients in thin films (DGTs) were systematically evaluated. The concentration in solution was calculated using Fick’s first law of diffusion from the directly measured flux to the DGT device. A selective cation exchange resin (Bio-Rad Chelex®100), which has been used extensively with DGT for trace metals, such as Cd2+, Cu2+ and Ni2+, was used for this work.
Elution of Ca and Mg from the resin with 1 M HNO3 was very reproducible. Measurements of Ca and Mg concentrations in synthetic solutions agreed well with the theoretical predictions. The negative response on uptake caused by lowered pH was investigated. Uptake was found to decline below pH 5. The capacity of the DGT device for Ca and Mg was also investigated to establish maximum deployment times for given concentrations.
Experiments with filtered and modified lake water show that DGT can be used to measure Ca and Mg when trace metals are present in the solution. An in situ deployment of DGT combined with an ultrafiltration study suggest that the Mg concentration measured by DGT is similar to the concentration found in the fraction <1 kDa. 相似文献
Oxide ceramic masses react to simple shearing with hardening (peptisation: increase in the shear stress with the shear deformation).
In the present study the correlation between the increase in the shear stress and the porosity, agglomeration processes and
the type of flow are analysed. For this purpose oxide ceramic masses are tested in a shear device especially developed for
pastes and analysed by rheometric experiments, NMR methods and particle size analysis. The results support the hypothesis
that structural changes (hardening, increase in the mean porosity) of the material during the peptisation mainly depend on
the magnitude and not on the kind of the energy input and thus of the type of flow. The fraction of bound (more generally,
the immobilised) water increases with the shear displacement. Also crushing of primary particles could be observed. Both the
crushing of solid particles causing an increased solid surface and the formation of a three-dimensional gel structure are
microscopic effects capable of resulting in the binding or retaining water. On a macroscopic scale these phenomena cause hardening.
Magnetic resonance imaging visualises flow-induced agglomerates, which form owing to the shear flow and increase the porosity
averaged over the whole sample. After the shear experiment rolls of paste can be seen which indicate that the general assumption
of a plane shear flow in the shear device is not warrantable.
Received: 19 July 2001 Accepted: 25 October 2001 相似文献
Isocytosine (ICH) exists in solution as two major tautomers, the keto form with N1 carrying a proton (1a) and the keto form with N3 being protonated (1b). In water, 1a and 1b exist in equilibrium with almost equal amounts of both forms present. Reactions with a series of Pd(II) and Pt(II) am(m)ine species such as (dien)Pd(II), (dien)Pt(II), and trans-(NH(3))(2)Pt(II) reveal, however, a distinct preference of these metals for the N3 site, as determined by (1)H NMR spectroscopy. Individual species have been identified by the pD dependence of the ICH resonances. pK(a) values (calculated for H(2)O) for deprotonation of the individual tautomers complexes are 6.5 and 6.4 for the N3 linkage isomers of dienPd(II) and dienPt(II), respectively, as well as 6.2 and 6.0 for the N1 linkage isomers. The dimetalated species [(dienM)(2)(IC-N1,N3)](3+) (M = Pd(II) or Pt(II)) are insensitive over a wide range of pD. The crystal structure analysis of [(dien)Pd(ICH-N3)](NO(3))(2) is reported. Ab initio calculations have been performed for tautomer compounds of composition [(NH(3))(3)Pt(ICH)](2+), cis- and trans-[(NH(3))(2)PtCl(ICH)](+), as well as trans-[(NH(3))(2)Pt(ICH)(2)](2+). Without exception, N3 linkage isomers are more stable, in agreement with experimental findings. As to the reasons for this binding preference, an NBO (natural bond orbital) analysis for [(NH(3))(3)Pt(ICH-N3)](2+)strongly suggests that intramolecular hydrogen bonding between trans-positioned NH(3) ligands and the two exocyclic groups of the ICH is of prime importance. The calculations furthermore show a marked pyramidalization of the NH(2) group of ICH in the complex once the heterocyclic ligand forms a dihedral angle <90 degrees with the Pt coordination plane. 相似文献
The highly explosive molecules As(N(3))(3) and Sb(N(3))(3) were obtained in pure form by the reactions of the corresponding fluorides with (CH(3))(3)SiN(3) in SO(2) and purification by sublimation. The crystal structures and (14)N NMR, infrared, and Raman spectra were determined, and the results compared to ab initio second-order perturbation theory calculations. Whereas Sb(N(3))(3) possesses a propeller-shaped, pyramidal structure with perfect C(3) symmetry, the As(N(3))(3) molecule is significantly distorted from C(3) symmetry due to crystal packing effects. 相似文献
Summary: The morphology and tensile deformation behaviour of a highly asymmetric styrene/butadiene star block copolymer (polystyrene (PS) content = 74%) containing random PS‐co‐PB (polybutadiene) copolymer as a rubbery phase were investigated. The existence of double yielding, similar to that observed in some semicrystalline polymers, was detected in this nanostructured amorphous polymer. The observed phenomenon may be correlated with two different micromechanical processes taking place at the initial stage of deformation.
The particle scattering behaviour of a pearl necklace chain is derived. The chain is composed of sphere-like pearls, separated by rod-like segments of fixed length, which have no angular restrictions. By calculating several series of model scattering curves, the important structural features are retrieved. The model is believed to be useful in interpreting intermediate structures of collapsing macromolecules or polyelectrolytes. A first application to a shrinking polyelectrolyte coil generated by molecular dynamic simulations (Limbach and Holm, J.Phys.Chem. 2003) is presented and used to discuss the potentials and limits of the model. 相似文献